Christoph Kapeller, Takahiro Sanada, Naohiro Tsuyuguchi, Christy Li, Christoph Guger
{"title":"AB073. Electrocorticography high-gamma dynamics during intraoperative hand movement mapping.","authors":"Christoph Kapeller, Takahiro Sanada, Naohiro Tsuyuguchi, Christy Li, Christoph Guger","doi":"10.21037/cco-24-ab073","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intraoperative functional mapping for glioma resection often necessitates awake craniotomies, requiring active patient participation. This procedure presents challenges for both the surgical team and the patient. Thus, minimizing mapping time becomes crucial. Passive mapping utilizing electrocorticography (ECoG) presents a promising approach to reduce intraoperative mapping efforts via direct electrical stimulation. This study aims to identify an efficient mapping protocol for hand movement by optimizing mapping duration and localization accuracy.</p><p><strong>Methods: </strong>Three glioma patients (two males, one female) underwent awake craniotomy for tumor resection at Asahikawa Medical University Hospital and Kindai University in Osaka. Patients were maintained at a bispectral index (BIS) level above 90 to ensure wakefulness during mapping. Data were collected using a DC-coupled g.HIamp biosignal amplifier, digitized with 24-bit resolution at a minimum sampling rate of 1,200 Hz. Each session comprised ten runs, each lasting 250 seconds, consisting of a 12-second rest phase (baseline) followed by a 12-second grasping period containing ten grasping movements. High-gamma activity (HGA, 60-170 Hz) was recorded from ECoG locations on the pre- and postcentral gyrus. Locations exhibiting significant grasping-related HGA, with stronger responses during early trials within a run, were classified as \"attenuated\".</p><p><strong>Results: </strong>Among 37 electrodes on the sensorimotor cortex, 16 exhibited significant HGA during grasping. Three locations demonstrated significant attenuation after three runs, with one location showing attenuation after the first three trials within a run.</p><p><strong>Conclusions: </strong>The observed attenuation effect of short-term repeated movements during intraoperative monitoring is relatively modest initially. However, as the number of repeated grasping blocks increases, the number of attenuated locations also rises. Consequently, minimizing overall mapping time, rather than reducing the number of tasks per block, is paramount. For statistical analysis, a minimum of 20 grasping trials (two runs of ten movements) or 48 seconds of motor mapping is recommended. Alternatively, a mapping protocol involving a third run or 30 grasping trials (72 seconds) may enhance data robustness. These preliminary findings, though based on a limited patient cohort, warrant confirmation and further investigation, particularly in epilepsy patients.</p>","PeriodicalId":9945,"journal":{"name":"Chinese clinical oncology","volume":"13 Suppl 1","pages":"AB073"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese clinical oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/cco-24-ab073","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Intraoperative functional mapping for glioma resection often necessitates awake craniotomies, requiring active patient participation. This procedure presents challenges for both the surgical team and the patient. Thus, minimizing mapping time becomes crucial. Passive mapping utilizing electrocorticography (ECoG) presents a promising approach to reduce intraoperative mapping efforts via direct electrical stimulation. This study aims to identify an efficient mapping protocol for hand movement by optimizing mapping duration and localization accuracy.
Methods: Three glioma patients (two males, one female) underwent awake craniotomy for tumor resection at Asahikawa Medical University Hospital and Kindai University in Osaka. Patients were maintained at a bispectral index (BIS) level above 90 to ensure wakefulness during mapping. Data were collected using a DC-coupled g.HIamp biosignal amplifier, digitized with 24-bit resolution at a minimum sampling rate of 1,200 Hz. Each session comprised ten runs, each lasting 250 seconds, consisting of a 12-second rest phase (baseline) followed by a 12-second grasping period containing ten grasping movements. High-gamma activity (HGA, 60-170 Hz) was recorded from ECoG locations on the pre- and postcentral gyrus. Locations exhibiting significant grasping-related HGA, with stronger responses during early trials within a run, were classified as "attenuated".
Results: Among 37 electrodes on the sensorimotor cortex, 16 exhibited significant HGA during grasping. Three locations demonstrated significant attenuation after three runs, with one location showing attenuation after the first three trials within a run.
Conclusions: The observed attenuation effect of short-term repeated movements during intraoperative monitoring is relatively modest initially. However, as the number of repeated grasping blocks increases, the number of attenuated locations also rises. Consequently, minimizing overall mapping time, rather than reducing the number of tasks per block, is paramount. For statistical analysis, a minimum of 20 grasping trials (two runs of ten movements) or 48 seconds of motor mapping is recommended. Alternatively, a mapping protocol involving a third run or 30 grasping trials (72 seconds) may enhance data robustness. These preliminary findings, though based on a limited patient cohort, warrant confirmation and further investigation, particularly in epilepsy patients.
期刊介绍:
The Chinese Clinical Oncology (Print ISSN 2304-3865; Online ISSN 2304-3873; Chin Clin Oncol; CCO) publishes articles that describe new findings in the field of oncology, and provides current and practical information on diagnosis, prevention and clinical investigations of cancer. Specific areas of interest include, but are not limited to: multimodality therapy, biomarkers, imaging, tumor biology, pathology, chemoprevention, and technical advances related to cancer. The aim of the Journal is to provide a forum for the dissemination of original research articles as well as review articles in all areas related to cancer. It is an international, peer-reviewed journal with a focus on cutting-edge findings in this rapidly changing field. To that end, Chin Clin Oncol is dedicated to translating the latest research developments into best multimodality practice. The journal features a distinguished editorial board, which brings together a team of highly experienced specialists in cancer treatment and research. The diverse experience of the board members allows our editorial panel to lend their expertise to a broad spectrum of cancer subjects.