Kiran Aftab, Salma Asif, Ansar Rahman, Ummul Wara, Faryal Raees, Ahmad Raza Shahid, Amna Farrukh, Ceemal Fareed, Manal Nasir, Rabeet Tariq, Muhammad Sameer, Meher Angez, Zeba Saleem, Komal Naeem, Muhammad Nouman Mughal, Fatima Mubarak, Syed Ather Enam
{"title":"AB093. Pixel-wise classification of glioma using deep learning for accurate tumour mapping on magnetic resonance imaging.","authors":"Kiran Aftab, Salma Asif, Ansar Rahman, Ummul Wara, Faryal Raees, Ahmad Raza Shahid, Amna Farrukh, Ceemal Fareed, Manal Nasir, Rabeet Tariq, Muhammad Sameer, Meher Angez, Zeba Saleem, Komal Naeem, Muhammad Nouman Mughal, Fatima Mubarak, Syed Ather Enam","doi":"10.21037/cco-24-ab093","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Central nervous system (CNS) tumours, especially glioma, are a complex disease and many challenges are encountered in their treatment. Artificial intelligence (AI) has made a colossal impact in many walks of life at a low cost. However, this avenue still needs to be explored in healthcare settings, demanding investment of resources towards growth in this area. We aim to develop machine learning (ML) algorithms to facilitate the accurate diagnosis and precise mapping of the brain tumour.</p><p><strong>Methods: </strong>We queried the data from 2019 to 2022 and brain magnetic resonance imaging (MRI) of glioma patients were extracted. Images that had both T1-contrast and T2-fluid-attenuated inversion recovery (T2-FLAIR) volume sequences available were included. MRI images were annotated by a team supervised by a neuroradiologist. The extracted MRIs thus obtained were then fed to the preprocessing pipeline to extract brains using SynthStrip. They were further fed to the deep learning-based semantic segmentation pipelines using UNet-based architecture with convolutional neural network (CNN) at its backbone. Subsequently, the algorithm was tested to assess the efficacy in the pixel-wise diagnosis of tumours.</p><p><strong>Results: </strong>In total, 69 samples of low-grade glioma (LGG) were used out of which 62 were used for fine-tuning a pre-trained model trained on brain tumor segmentation (BraTS) 2020 and 7 were used for testing. For the evaluation of the model, the Dice coefficient was used as the metric. The average Dice coefficient on the 7 test samples was 0.94.</p><p><strong>Conclusions: </strong>With the advent of technology, AI continues to modify our lifestyles. It is critical to adapt this technology in healthcare with the aim of improving the provision of patient care. We present our preliminary data for the use of ML algorithms in the diagnosis and segmentation of glioma. The promising result with comparable accuracy highlights the importance of early adaptation of this nascent technology.</p>","PeriodicalId":9945,"journal":{"name":"Chinese clinical oncology","volume":"13 Suppl 1","pages":"AB093"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese clinical oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/cco-24-ab093","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Central nervous system (CNS) tumours, especially glioma, are a complex disease and many challenges are encountered in their treatment. Artificial intelligence (AI) has made a colossal impact in many walks of life at a low cost. However, this avenue still needs to be explored in healthcare settings, demanding investment of resources towards growth in this area. We aim to develop machine learning (ML) algorithms to facilitate the accurate diagnosis and precise mapping of the brain tumour.
Methods: We queried the data from 2019 to 2022 and brain magnetic resonance imaging (MRI) of glioma patients were extracted. Images that had both T1-contrast and T2-fluid-attenuated inversion recovery (T2-FLAIR) volume sequences available were included. MRI images were annotated by a team supervised by a neuroradiologist. The extracted MRIs thus obtained were then fed to the preprocessing pipeline to extract brains using SynthStrip. They were further fed to the deep learning-based semantic segmentation pipelines using UNet-based architecture with convolutional neural network (CNN) at its backbone. Subsequently, the algorithm was tested to assess the efficacy in the pixel-wise diagnosis of tumours.
Results: In total, 69 samples of low-grade glioma (LGG) were used out of which 62 were used for fine-tuning a pre-trained model trained on brain tumor segmentation (BraTS) 2020 and 7 were used for testing. For the evaluation of the model, the Dice coefficient was used as the metric. The average Dice coefficient on the 7 test samples was 0.94.
Conclusions: With the advent of technology, AI continues to modify our lifestyles. It is critical to adapt this technology in healthcare with the aim of improving the provision of patient care. We present our preliminary data for the use of ML algorithms in the diagnosis and segmentation of glioma. The promising result with comparable accuracy highlights the importance of early adaptation of this nascent technology.
期刊介绍:
The Chinese Clinical Oncology (Print ISSN 2304-3865; Online ISSN 2304-3873; Chin Clin Oncol; CCO) publishes articles that describe new findings in the field of oncology, and provides current and practical information on diagnosis, prevention and clinical investigations of cancer. Specific areas of interest include, but are not limited to: multimodality therapy, biomarkers, imaging, tumor biology, pathology, chemoprevention, and technical advances related to cancer. The aim of the Journal is to provide a forum for the dissemination of original research articles as well as review articles in all areas related to cancer. It is an international, peer-reviewed journal with a focus on cutting-edge findings in this rapidly changing field. To that end, Chin Clin Oncol is dedicated to translating the latest research developments into best multimodality practice. The journal features a distinguished editorial board, which brings together a team of highly experienced specialists in cancer treatment and research. The diverse experience of the board members allows our editorial panel to lend their expertise to a broad spectrum of cancer subjects.