Emerging Nanotechnology Involved in Skin Cancer: Pathogenesis, Biomarkers, Ethosomal Formulation and Future Perspective.

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current pharmaceutical biotechnology Pub Date : 2024-09-13 DOI:10.2174/0113892010311407240902050401
Milan Singh Kahlon, Raj Kamal, Amit Kumar, Ankit Awasthi, Manish Kumar
{"title":"Emerging Nanotechnology Involved in Skin Cancer: Pathogenesis, Biomarkers, Ethosomal Formulation and Future Perspective.","authors":"Milan Singh Kahlon, Raj Kamal, Amit Kumar, Ankit Awasthi, Manish Kumar","doi":"10.2174/0113892010311407240902050401","DOIUrl":null,"url":null,"abstract":"<p><p>Skin cancer, which comprises both melanoma and non-melanoma forms, is frequently diagnosed as the predominant malignancy among today's population. Existing treatments are often prolonged and complex, have a low rate of success, and have side effects. This complexity leads to poor patient adherence and increases the risk of disease recurrence. Ethosomes, extensively studied for their applications in topical and transdermal therapies, are distinguished by their high ethanol content, which facilitates enhanced skin penetration and efficient drug delivery. Compared to traditional liposomes, ethosomes offer notable advantages due to their unique composition, demonstrating potential efficacy in treating various skin conditions, including basal cell carcinoma, squamous cell carcinoma, and melanoma. The present review provides a brief introduction to skin melanoma and its pathogenesis, signalling pathways, biomarkers, the need for ethogel-based drug delivery, applications of ethosomes against skin cancer, and clinical trials.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010311407240902050401","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Skin cancer, which comprises both melanoma and non-melanoma forms, is frequently diagnosed as the predominant malignancy among today's population. Existing treatments are often prolonged and complex, have a low rate of success, and have side effects. This complexity leads to poor patient adherence and increases the risk of disease recurrence. Ethosomes, extensively studied for their applications in topical and transdermal therapies, are distinguished by their high ethanol content, which facilitates enhanced skin penetration and efficient drug delivery. Compared to traditional liposomes, ethosomes offer notable advantages due to their unique composition, demonstrating potential efficacy in treating various skin conditions, including basal cell carcinoma, squamous cell carcinoma, and melanoma. The present review provides a brief introduction to skin melanoma and its pathogenesis, signalling pathways, biomarkers, the need for ethogel-based drug delivery, applications of ethosomes against skin cancer, and clinical trials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与皮肤癌有关的新兴纳米技术:致病机理、生物标志物、Ethosomal 配方和未来展望。
皮肤癌包括黑色素瘤和非黑色素瘤两种形式,经常被诊断为当今人群中最主要的恶性肿瘤。现有的治疗方法往往旷日持久、复杂、成功率低且有副作用。这种复杂性导致患者依从性差,增加了疾病复发的风险。乙糖体因其在局部和透皮疗法中的应用而被广泛研究,其特点是乙醇含量高,有利于增强皮肤渗透和高效给药。与传统的脂质体相比,乙硫体因其独特的成分而具有显著的优势,在治疗各种皮肤病(包括基底细胞癌、鳞状细胞癌和黑色素瘤)方面具有潜在的疗效。本综述简要介绍了皮肤黑色素瘤及其发病机制、信号传导途径、生物标志物、基于乙醇的给药需求、乙醇体对皮肤癌的应用以及临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
Dual Biological Effects and Mechanisms of Gut Microbiota in Breast Cancer: A Review. Nanoparticles as Delivery Vehicles for Vaccines: The Use of Gold Nanoparticles. Niosomal Encapsulation of Anti-Cancer Peptides: A Revolutionary Strategy in Cancer Therapy. Nutritional Evaluation and Free Radical Scavenging Activity of Nano-formulated Selenium-Moringa Peregrine Seed Extract as a Promising Suppressor of TGF-β1/P38/NF-kβ Signaling Pathway in HgCl2 Intoxicated-Mice. Biotechnological Perspectives on the Therapeutic Potential of Phenylpropanoid Cinnamaldehyde in Inflammatory Diseases: Signaling Pathways.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1