{"title":"Exploring the Arsenal of Novel Antifungal Drug Targets for Combating Fungal Infections.","authors":"Pooja Joshi, Archana Navale, Ajay Shelke, Muskan Patel","doi":"10.2174/0113892010304880240828075411","DOIUrl":null,"url":null,"abstract":"<p><p>Fungal infections contribute to over 1.5 million fatalities each year, with cutaneous mycoses standing as prominent global infections. The spectrum of these mycoses varies widely, encompassing enduring afflictions like ringworm, localized infections such as tinea capitis, recurrent instances like vaginal candidiasis, and potentially fatal systemic infections impacting multiple organ systems. The escalating recognition of the health and socioeconomic ramifications associated with fungal pathogens underscores their importance in contemporary discourse. On a global scale, projections indicate that over 300 million individuals experience significant fungal infections annually, resulting in a mortality rate exceeding 1.5 million deaths per year. Alarmingly, resistance to commonly used antifungal drugs was on the rise, with some reports suggesting that over 10% of Candida bloodstream isolates worldwide were resistant to fluconazole, a commonly prescribed antifungal medication. Therefore, there is an immediate need to increase the accessibility of new antifungal medications while minimizing their costs and adverse effects. Fungi, as heterotrophic organisms, acquire nutrients through absorption. Their filamentous structure, composed of hyphae, facilitates efficient nutrient uptake by secreting enzymes that break down complex organic matter into simpler compounds. These organisms exhibit remarkable adaptability in responding to environmental cues, adjusting growth rates, and altering morphological features. Fungi regulate their metabolism intricately, undergoing various metabolic pathways for energy production and utilizing diverse substrates for respiration. Additionally, they exhibit distinctive reproductive strategies, employing both sexual and asexual modes of reproduction, contributing to their genetic diversity and resilience in diverse ecosystems. We now have more information than ever on the origins of infection as well as the physiology of fungi cells, giving us the chance to use it to produce new generations of antifungals. This review includes various novel antifungal drug targets showing their possible effects via different mechanisms aiming at vital functions like GPI synthesis, cell wall synthesis, hyphal growth, and other essential pathways responsible for fungal growth.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010304880240828075411","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fungal infections contribute to over 1.5 million fatalities each year, with cutaneous mycoses standing as prominent global infections. The spectrum of these mycoses varies widely, encompassing enduring afflictions like ringworm, localized infections such as tinea capitis, recurrent instances like vaginal candidiasis, and potentially fatal systemic infections impacting multiple organ systems. The escalating recognition of the health and socioeconomic ramifications associated with fungal pathogens underscores their importance in contemporary discourse. On a global scale, projections indicate that over 300 million individuals experience significant fungal infections annually, resulting in a mortality rate exceeding 1.5 million deaths per year. Alarmingly, resistance to commonly used antifungal drugs was on the rise, with some reports suggesting that over 10% of Candida bloodstream isolates worldwide were resistant to fluconazole, a commonly prescribed antifungal medication. Therefore, there is an immediate need to increase the accessibility of new antifungal medications while minimizing their costs and adverse effects. Fungi, as heterotrophic organisms, acquire nutrients through absorption. Their filamentous structure, composed of hyphae, facilitates efficient nutrient uptake by secreting enzymes that break down complex organic matter into simpler compounds. These organisms exhibit remarkable adaptability in responding to environmental cues, adjusting growth rates, and altering morphological features. Fungi regulate their metabolism intricately, undergoing various metabolic pathways for energy production and utilizing diverse substrates for respiration. Additionally, they exhibit distinctive reproductive strategies, employing both sexual and asexual modes of reproduction, contributing to their genetic diversity and resilience in diverse ecosystems. We now have more information than ever on the origins of infection as well as the physiology of fungi cells, giving us the chance to use it to produce new generations of antifungals. This review includes various novel antifungal drug targets showing their possible effects via different mechanisms aiming at vital functions like GPI synthesis, cell wall synthesis, hyphal growth, and other essential pathways responsible for fungal growth.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.