collectNET: a web server for integrated inference of cell-cell communication network.

IF 3.4 4区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Database: The Journal of Biological Databases and Curation Pub Date : 2024-09-16 DOI:10.1093/database/baae098
Yan Pan, Zijing Gao, Xuejian Cui, Zhen Li, Rui Jiang
{"title":"collectNET: a web server for integrated inference of cell-cell communication network.","authors":"Yan Pan, Zijing Gao, Xuejian Cui, Zhen Li, Rui Jiang","doi":"10.1093/database/baae098","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-cell communication (CCC) through ligand-receptor (L-R) pairs forms the cornerstone for complex functionalities in multicellular organisms. Deciphering such intercellular signaling can contribute to unraveling disease mechanisms and enable targeted therapy. Nonetheless, notable biases and inconsistencies are evident among the inferential outcomes generated by current methods for inferring CCC network. To fill this gap, we developed collectNET (http://health.tsinghua.edu.cn/collectnet) as a comprehensive web platform for analyzing CCC network, with efficient calculation, hierarchical browsing, comprehensive statistics, advanced searching, and intuitive visualization. collectNET provides a reliable online inference service with prior knowledge of three public L-R databases and systematic integration of three mainstream inference methods. Additionally, collectNET has assembled a human CCC atlas, including 126 785 significant communication pairs based on 343 023 cells. We anticipate that collectNET will benefit researchers in gaining a more holistic understanding of cell development and differentiation mechanisms. Database URL: http://health.tsinghua.edu.cn/collectnet.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403813/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae098","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell-cell communication (CCC) through ligand-receptor (L-R) pairs forms the cornerstone for complex functionalities in multicellular organisms. Deciphering such intercellular signaling can contribute to unraveling disease mechanisms and enable targeted therapy. Nonetheless, notable biases and inconsistencies are evident among the inferential outcomes generated by current methods for inferring CCC network. To fill this gap, we developed collectNET (http://health.tsinghua.edu.cn/collectnet) as a comprehensive web platform for analyzing CCC network, with efficient calculation, hierarchical browsing, comprehensive statistics, advanced searching, and intuitive visualization. collectNET provides a reliable online inference service with prior knowledge of three public L-R databases and systematic integration of three mainstream inference methods. Additionally, collectNET has assembled a human CCC atlas, including 126 785 significant communication pairs based on 343 023 cells. We anticipate that collectNET will benefit researchers in gaining a more holistic understanding of cell development and differentiation mechanisms. Database URL: http://health.tsinghua.edu.cn/collectnet.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
collectNET:用于小区通信网络综合推理的网络服务器。
通过配体-受体(L-R)对进行的细胞-细胞通讯(CCC)是多细胞生物体复杂功能的基石。破译这种细胞间信号转导有助于揭示疾病机理,实现靶向治疗。然而,目前推断 CCC 网络的方法所产生的推断结果存在明显的偏差和不一致。为了填补这一空白,我们开发了 collectNET (http://health.tsinghua.edu.cn/collectnet),作为分析 CCC 网络的综合网络平台,它具有高效计算、分层浏览、全面统计、高级搜索和直观可视化等特点。collectNET 预先了解三个公共 L-R 数据库,并系统整合了三种主流推断方法,从而提供了可靠的在线推断服务。此外,collectNET 还绘制了人类 CCC 图集,其中包括基于 343 023 个细胞的 126 785 个重要通讯对。我们预计,collectNET 将有助于研究人员更全面地了解细胞发育和分化机制。数据库网址:http://health.tsinghua.edu.cn/collectnet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Database: The Journal of Biological Databases and Curation
Database: The Journal of Biological Databases and Curation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
9.00
自引率
3.40%
发文量
100
审稿时长
>12 weeks
期刊介绍: Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data. Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.
期刊最新文献
GeniePool 2.0: advancing variant analysis through CHM13-T2T, AlphaMissense, gnomAD V4 integration, and variant co-occurrence queries. AneRBC dataset: a benchmark dataset for computer-aided anemia diagnosis using RBC images. MiCK: a database of gut microbial genes linked with chemoresistance in cancer patients. JTIS: enhancing biomedical document-level relation extraction through joint training with intermediate steps. scEccDNAdb: an integrated single-cell eccDNA resource for human and mouse.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1