7D, a small molecule inhibits dengue infection by increasing interferons and neutralizing-antibodies via CXCL4:CXCR3:p38:IRF3 and Sirt1:STAT3 axes respectively.

IF 9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL EMBO Molecular Medicine Pub Date : 2024-10-01 Epub Date: 2024-09-16 DOI:10.1038/s44321-024-00137-8
Kishan Kumar Gaur, Tejeswara Rao Asuru, Mitul Srivastava, Nitu Singh, Nikil Purushotham, Boja Poojary, Bhabatosh Das, Sankar Bhattacharyya, Shailendra Asthana, Prasenjit Guchhait
{"title":"7D, a small molecule inhibits dengue infection by increasing interferons and neutralizing-antibodies via CXCL4:CXCR3:p38:IRF3 and Sirt1:STAT3 axes respectively.","authors":"Kishan Kumar Gaur, Tejeswara Rao Asuru, Mitul Srivastava, Nitu Singh, Nikil Purushotham, Boja Poojary, Bhabatosh Das, Sankar Bhattacharyya, Shailendra Asthana, Prasenjit Guchhait","doi":"10.1038/s44321-024-00137-8","DOIUrl":null,"url":null,"abstract":"<p><p>There are a limited number of effective vaccines against dengue virus (DENV) and significant efforts are being made to develop potent anti-virals. Previously, we described that platelet-chemokine CXCL4 negatively regulates interferon (IFN)-α/β synthesis and promotes DENV2 replication. An antagonist to CXCR3 (CXCL4 receptor) reversed it and inhibited viral replication. In a concurrent search, we identified CXCR3-antagonist from our compound library, namely 7D, which inhibited all serotypes of DENV in vitro. With a half-life of ~2.85 h in plasma and no significant toxicity, 7D supplementation (8 mg/kg-body-weight) to DENV2-infected IFNα/β/γR<sup>-/-</sup>AG129 or wild-type C57BL6 mice increased synthesis of IFN-α/β and IFN-λ, and rescued disease symptoms like thrombocytopenia, leukopenia and vascular-leakage, with improved survival. 7D, having the property to inhibit Sirt-1 deacetylase, promoted acetylation and phosphorylation of STAT3, which in-turn increased plasmablast proliferation, germinal-center maturation and synthesis of neutralizing-antibodies against DENV2 in mice. A STAT3-inhibitor successfully inhibited these effects of 7D. Together, these observations identify compound 7D as a stimulator of IFN-α/β/λ synthesis via CXCL4:CXCR3:p38:IRF3 signaling, and a booster for neutralizing-antibody generation by promoting STAT3-acetylation in plasmablasts, capable of protecting dengue infection.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"2376-2401"},"PeriodicalIF":9.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473809/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-024-00137-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

There are a limited number of effective vaccines against dengue virus (DENV) and significant efforts are being made to develop potent anti-virals. Previously, we described that platelet-chemokine CXCL4 negatively regulates interferon (IFN)-α/β synthesis and promotes DENV2 replication. An antagonist to CXCR3 (CXCL4 receptor) reversed it and inhibited viral replication. In a concurrent search, we identified CXCR3-antagonist from our compound library, namely 7D, which inhibited all serotypes of DENV in vitro. With a half-life of ~2.85 h in plasma and no significant toxicity, 7D supplementation (8 mg/kg-body-weight) to DENV2-infected IFNα/β/γR-/-AG129 or wild-type C57BL6 mice increased synthesis of IFN-α/β and IFN-λ, and rescued disease symptoms like thrombocytopenia, leukopenia and vascular-leakage, with improved survival. 7D, having the property to inhibit Sirt-1 deacetylase, promoted acetylation and phosphorylation of STAT3, which in-turn increased plasmablast proliferation, germinal-center maturation and synthesis of neutralizing-antibodies against DENV2 in mice. A STAT3-inhibitor successfully inhibited these effects of 7D. Together, these observations identify compound 7D as a stimulator of IFN-α/β/λ synthesis via CXCL4:CXCR3:p38:IRF3 signaling, and a booster for neutralizing-antibody generation by promoting STAT3-acetylation in plasmablasts, capable of protecting dengue infection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
7D是一种小分子,可分别通过CXCL4:CXCR3:p38:IRF3和Sirt1:STAT3轴增加干扰素和中和抗体,从而抑制登革热感染。
目前针对登革热病毒(DENV)的有效疫苗数量有限,人们正在努力开发强效抗病毒药物。此前,我们曾描述过血小板趋化因子 CXCL4 负向调节干扰素(IFN)-α/β 的合成并促进 DENV2 的复制。CXCR3(CXCL4 受体)的拮抗剂可逆转这种作用并抑制病毒复制。在同时进行的搜索中,我们从化合物库中发现了 CXCR3 拮抗剂,即 7D,它能在体外抑制所有血清型的 DENV。7D在血浆中的半衰期约为2.85小时,且无明显毒性,给感染IFNα/β/γR-/-AG129或野生型C57BL6的DENV2小鼠补充7D(8毫克/千克体重)可增加IFN-α/β和IFN-λ的合成,缓解血小板减少、白细胞减少和血管渗漏等疾病症状,并提高存活率。7D 具有抑制 Sirt-1 去乙酰化酶的特性,可促进 STAT3 的乙酰化和磷酸化,进而增加小鼠浆细胞的增殖、生殖中心的成熟和抗 DENV2 中和抗体的合成。STAT3抑制剂成功抑制了7D的这些作用。总之,这些观察结果表明化合物 7D 可通过 CXCL4:CXCR3:p38:IRF3 信号刺激 IFN-α/β/λ 的合成,并通过促进血浆母细胞中 STAT3 的乙酰化促进中和抗体的生成,从而保护登革热感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Molecular Medicine
EMBO Molecular Medicine 医学-医学:研究与实验
CiteScore
17.70
自引率
0.90%
发文量
105
审稿时长
4-8 weeks
期刊介绍: EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance. To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields: Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention). Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease. Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)
期刊最新文献
Salmonella cancer therapy metabolically disrupts tumours at the collateral cost of T cell immunity. Diagnosis and prognosis prediction of gastric cancer by high-performance serum lipidome fingerprints. APOE from astrocytes restores Alzheimer's Aβ-pathology and DAM-like responses in APOE deficient microglia. Hair follicle stem cells and the collapse of self-tolerance in alopecia: the interplay of barrier function, the microbiome, and immunity. JAK-STAT1 as therapeutic target for EGFR deficiency-associated inflammation and scarring alopecia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1