Extracellular vesicle and CRISPR gene therapy: Current applications in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease

IF 2.7 4区 医学 Q3 NEUROSCIENCES European Journal of Neuroscience Pub Date : 2024-09-19 DOI:10.1111/ejn.16541
Enes Akyuz, Feyza Sule Aslan, Enise Gokce, Oguzkan Ilmaz, Feyzullah Topcu, Seda Kakac
{"title":"Extracellular vesicle and CRISPR gene therapy: Current applications in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease","authors":"Enes Akyuz,&nbsp;Feyza Sule Aslan,&nbsp;Enise Gokce,&nbsp;Oguzkan Ilmaz,&nbsp;Feyzullah Topcu,&nbsp;Seda Kakac","doi":"10.1111/ejn.16541","DOIUrl":null,"url":null,"abstract":"<p>Neurodegenerative diseases are characterized by progressive deterioration of the nervous system. Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) are prominently life-threatening examples of neurodegenerative diseases. The complexity of the pathophysiology in neurodegenerative diseases causes difficulties in diagnosing. Although the drugs temporarily help to correct specific symptoms including memory loss and degeneration, a complete treatment has not been found yet. New therapeutic approaches have been developed to understand and treat the underlying pathogenesis of neurodegenerative diseases. With this purpose, clustered-regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) technology has recently suggested a new treatment option. Editing of the genome is carried out by insertion and deletion processes on DNA. Safe delivery of the CRISPR/Cas system to the targeted cells without affecting surrounding cells is frequently investigated. Extracellular vesicles (EVs), that is exosomes, have recently been used in CRISPR/Cas studies. In this review, CRISPR/Cas and EV approaches used for diagnosis and/or treatment in AD, PD, ALS, and HD are reviewed. CRISPR/Cas and EV technologies, which stand out as new therapeutic approaches, may offer a definitive treatment option in neurodegenerative diseases.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"60 8","pages":"6057-6090"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejn.16541","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.16541","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative diseases are characterized by progressive deterioration of the nervous system. Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) are prominently life-threatening examples of neurodegenerative diseases. The complexity of the pathophysiology in neurodegenerative diseases causes difficulties in diagnosing. Although the drugs temporarily help to correct specific symptoms including memory loss and degeneration, a complete treatment has not been found yet. New therapeutic approaches have been developed to understand and treat the underlying pathogenesis of neurodegenerative diseases. With this purpose, clustered-regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) technology has recently suggested a new treatment option. Editing of the genome is carried out by insertion and deletion processes on DNA. Safe delivery of the CRISPR/Cas system to the targeted cells without affecting surrounding cells is frequently investigated. Extracellular vesicles (EVs), that is exosomes, have recently been used in CRISPR/Cas studies. In this review, CRISPR/Cas and EV approaches used for diagnosis and/or treatment in AD, PD, ALS, and HD are reviewed. CRISPR/Cas and EV technologies, which stand out as new therapeutic approaches, may offer a definitive treatment option in neurodegenerative diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞外囊泡和 CRISPR 基因疗法:目前在阿尔茨海默病、帕金森病、肌萎缩侧索硬化症和亨廷顿病中的应用。
神经退行性疾病的特征是神经系统逐渐退化。阿尔茨海默病(AD)、帕金森病(PD)、肌萎缩性脊髓侧索硬化症(ALS)和亨廷顿病(HD)是神经退行性疾病中威胁生命的主要病例。神经退行性疾病病理生理学的复杂性给诊断带来了困难。虽然药物暂时有助于纠正包括记忆力减退和退化在内的特定症状,但至今仍未找到彻底的治疗方法。为了了解和治疗神经退行性疾病的潜在发病机制,人们开发了新的治疗方法。为此,聚类规则间隔短回文重复序列/CRISPR 相关蛋白(CRISPR/Cas)技术最近提出了一种新的治疗方案。基因组编辑是通过在 DNA 上进行插入和删除的过程来实现的。如何在不影响周围细胞的情况下将 CRISPR/Cas 系统安全地传递到目标细胞是人们经常研究的问题。细胞外囊泡(EVs),即外泌体,最近被用于 CRISPR/Cas 研究。本综述对用于诊断和/或治疗 AD、PD、ALS 和 HD 的 CRISPR/Cas 和 EV 方法进行了综述。作为新的治疗方法,CRISPR/Cas 和 EV 技术可能会为神经退行性疾病提供明确的治疗方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Neuroscience
European Journal of Neuroscience 医学-神经科学
CiteScore
7.10
自引率
5.90%
发文量
305
审稿时长
3.5 months
期刊介绍: EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.
期刊最新文献
Correction to 'Changes in neuroinflammatory markers and microglial density in the hippocampus and prefrontal cortex of the C58/J mouse model of autism'. Editorial for special issue: "New trends in the empirical study of consciousness: Measures and mechanisms". GABAergic signalling in the suprachiasmatic nucleus is required for coherent circadian rhythmicity. Regulator of G protein signalling 14 (RGS14) protein expression profile in the adult mouse brain. Behavioural phenotypes of Dicer knockout in the mouse SCN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1