Bilour Khan, Ervin Nippolainen, Fatemeh Shahini, Nonappa, Alexey Popov, Juha Töyräs, Isaac O Afara
{"title":"Relationship between depth-wise refractive index and biomechanical properties of human articular cartilage.","authors":"Bilour Khan, Ervin Nippolainen, Fatemeh Shahini, Nonappa, Alexey Popov, Juha Töyräs, Isaac O Afara","doi":"10.1117/1.JBO.29.9.095003","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Optical properties of biological tissues, such as refractive index (RI), are fundamental properties, intrinsically linked to the tissue's composition and structure. We hypothesize that, as the RI and the functional properties of articular cartilage (AC) are dependent on the tissue's structure and composition, the RI of AC is related to its biomechanical properties.</p><p><strong>Aim: </strong>This study aims to investigate the relationship between RI of human AC and its biomechanical properties.</p><p><strong>Approach: </strong>Human cartilage samples ( <math><mrow><mi>n</mi> <mo>=</mo> <mn>22</mn></mrow> </math> ) were extracted from the right knee joint of three cadaver donors (one female, aged 47 years, and two males, aged 64 and 68 years) obtained from a commercial biobank (Science Care, Phoenix, Arizona, United States). The samples were initially subjected to mechanical indentation testing to determine elastic [equilibrium modulus (EM) and instantaneous modulus (IM)] and dynamic [dynamic modulus (DM)] viscoelastic properties. An Abbemat 3200 automatic one-wavelength refractometer operating at 600 nm was used to measure the RI of the extracted sections. Similarly, Spearman's and Pearson's correlation coefficients were employed for non-normal and normal datasets, respectively, to determine the correlation between the depth-wise RI and biomechanical properties of the cartilage samples as a function of the collagen fibril orientation.</p><p><strong>Results: </strong>A positive correlation with statistically significant relations ( <math><mrow><mi>p</mi> <mo>-</mo> <mtext>values</mtext> <mo><</mo> <mn>0.05</mn></mrow> </math> ) was observed between the RI and the biomechanical properties (EM, IM, and DM) along the tissue depth for each zone, e.g., superficial, middle, and deep zones. Likewise, a lower positive correlation with statistically significant relations ( <math><mrow><mi>p</mi> <mo>-</mo> <mtext>values</mtext> <mo><</mo> <mn>0.05</mn></mrow> </math> ) was also observed for collagen fibril orientation of all zones with the biomechanical properties.</p><p><strong>Conclusions: </strong>The results indicate that, although the RI exhibits different levels of correlation with different biomechanical properties, the relationship varies as a function of the tissue depth. This knowledge paves the way for optically monitoring changes in AC biomechanical properties nondestructively via changes in the RI. Thus, the RI could be a potential biomarker for assessing the mechanical competency of AC, particularly in degenerative diseases, such as osteoarthritis.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 9","pages":"095003"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413650/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.9.095003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Significance: Optical properties of biological tissues, such as refractive index (RI), are fundamental properties, intrinsically linked to the tissue's composition and structure. We hypothesize that, as the RI and the functional properties of articular cartilage (AC) are dependent on the tissue's structure and composition, the RI of AC is related to its biomechanical properties.
Aim: This study aims to investigate the relationship between RI of human AC and its biomechanical properties.
Approach: Human cartilage samples ( ) were extracted from the right knee joint of three cadaver donors (one female, aged 47 years, and two males, aged 64 and 68 years) obtained from a commercial biobank (Science Care, Phoenix, Arizona, United States). The samples were initially subjected to mechanical indentation testing to determine elastic [equilibrium modulus (EM) and instantaneous modulus (IM)] and dynamic [dynamic modulus (DM)] viscoelastic properties. An Abbemat 3200 automatic one-wavelength refractometer operating at 600 nm was used to measure the RI of the extracted sections. Similarly, Spearman's and Pearson's correlation coefficients were employed for non-normal and normal datasets, respectively, to determine the correlation between the depth-wise RI and biomechanical properties of the cartilage samples as a function of the collagen fibril orientation.
Results: A positive correlation with statistically significant relations ( ) was observed between the RI and the biomechanical properties (EM, IM, and DM) along the tissue depth for each zone, e.g., superficial, middle, and deep zones. Likewise, a lower positive correlation with statistically significant relations ( ) was also observed for collagen fibril orientation of all zones with the biomechanical properties.
Conclusions: The results indicate that, although the RI exhibits different levels of correlation with different biomechanical properties, the relationship varies as a function of the tissue depth. This knowledge paves the way for optically monitoring changes in AC biomechanical properties nondestructively via changes in the RI. Thus, the RI could be a potential biomarker for assessing the mechanical competency of AC, particularly in degenerative diseases, such as osteoarthritis.
期刊介绍:
The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.