Pin-Yu Chen , Mao-Shin Lin , Chin-Chuan Chen , Yann-Lii Leu , Shu-Huei Wang
{"title":"The flavonoid hydroxygenkwanin reduces inflammation and neointimal formation","authors":"Pin-Yu Chen , Mao-Shin Lin , Chin-Chuan Chen , Yann-Lii Leu , Shu-Huei Wang","doi":"10.1016/j.jnutbio.2024.109771","DOIUrl":null,"url":null,"abstract":"<div><div>Abnormal vascular smooth muscle cell (VSMC) proliferation and migration play crucial roles in neointimal hyperplasia and restenosis progression in response to stimulation with various inflammatory cytokines, such as platelet-derived growth factor-BB (PDGF-BB) and tumour necrosis factor-α (TNF-α). Hydroxygenkwanin (HGK) exerts remarkable anti-inflammatory, antitumour, antiproliferative and antimigratory effects. The aim of the study was to elucidate the therapeutic effect and regulatory mechanism of HGK on neointimal hyperplasia. The results showed that HGK inhibited the abnormal proliferation, migration, and inflammation of PDGF-BB- or TNF-α-treated VSMCs through regulation of the PDK1/AKT/mTOR pathway. In addition, HGK promoted circulating endothelial progenitor cell (EPC) chemotaxis. In an in vivo assay, HGK dramatically enhanced re-endothelization and reduced neointimal hyperplasia after femoral artery denudation with a guide wire in mice. These results suggest that HGK can serve as a therapeutic target drug or a functional food supplement for the treatment of restenosis.</div></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"135 ","pages":"Article 109771"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095528632400202X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abnormal vascular smooth muscle cell (VSMC) proliferation and migration play crucial roles in neointimal hyperplasia and restenosis progression in response to stimulation with various inflammatory cytokines, such as platelet-derived growth factor-BB (PDGF-BB) and tumour necrosis factor-α (TNF-α). Hydroxygenkwanin (HGK) exerts remarkable anti-inflammatory, antitumour, antiproliferative and antimigratory effects. The aim of the study was to elucidate the therapeutic effect and regulatory mechanism of HGK on neointimal hyperplasia. The results showed that HGK inhibited the abnormal proliferation, migration, and inflammation of PDGF-BB- or TNF-α-treated VSMCs through regulation of the PDK1/AKT/mTOR pathway. In addition, HGK promoted circulating endothelial progenitor cell (EPC) chemotaxis. In an in vivo assay, HGK dramatically enhanced re-endothelization and reduced neointimal hyperplasia after femoral artery denudation with a guide wire in mice. These results suggest that HGK can serve as a therapeutic target drug or a functional food supplement for the treatment of restenosis.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.