Contrasting the Reinforcing Effects of the Novel Dopamine Transport Inhibitors JJC8-088 and JJC8-091 in Monkeys: Potential Translation to Medication Assisted Treatment.
Mia I Allen, Omeed Rahimi, Bernard N Johnson, Jianjing Cao, Amy Hauck Newman, Michael A Nader
{"title":"<b>Contrasting the Reinforcing Effects of the Novel Dopamine Transport Inhibitors JJC8-088 and JJC8-091 in Monkeys: Potential Translation to Medication Assisted Treatment</b>.","authors":"Mia I Allen, Omeed Rahimi, Bernard N Johnson, Jianjing Cao, Amy Hauck Newman, Michael A Nader","doi":"10.1124/jpet.124.002356","DOIUrl":null,"url":null,"abstract":"<p><p>Despite considerable efforts, there remains no FDA-approved medications for cocaine use disorder (CUD). One strategy to mitigate cocaine craving and relapse is to elevate dopamine (DA). The DA transport inhibitor and releaser <i>d</i>-amphetamine has been shown to decrease cocaine self-administration (SA), although it has abuse liability. Recently, several modafinil analogues reduced cocaine SA in rats and monkeys, including JJC8-088, characterized as \"cocaine like\" in rats, and JJC8-091, characterized as \"atypical\" and not SA by rats. The present studies evaluated the reinforcing effects of both compounds in monkeys under several conditions. For Experiment 1, four male cocaine-experienced rhesus monkeys self-administered cocaine (0.001-0.3 mg/kg/injection), JJC8-088 (0.001-0.3 mg/kg/injection), and JJC8-091 (0.1-3.0 mg/kg/injection) under a progressive-ratio (PR) schedule of reinforcement. Both JJC compounds functioned as reinforcers with equal reinforcing strength to cocaine. Although JJC8-091 was less potent than cocaine, JJC8-088 and cocaine had similar potencies. For Experiment 2, one male and two females drug-naïve cynomolgus monkeys responded on a fixed-ratio schedule of food reinforcement. JJC8-091 was self-administered at rates higher than saline in all three monkeys. In Experiment 3, monkeys from Experiment 2 responded under a concurrent drug vs. food choice paradigm and given access to cocaine or JJC8-091 under these conditions. At doses equal to or one-half log-units higher than doses used in Experiment 2, cocaine, but not JJC8-091, was chosen over food. Together, these results demonstrate that while JJC8-091 may be reinforcing under some conditions, its reinforcing strength, in the presence of an alternative reinforcer, is substantially less than cocaine. <b>Significance Statement</b> JJC8-088 and JJC8-091 have shown efficacy is reducing cocaine self-administration in rats and in nonhuman primates. This study found that both compounds maintained self-administration in monkeys responding under several conditions. However, when given access to an alternative reinforcer during the self-administration session, JJC8-091 was not reinforcing, suggesting that JJC8-091 may be a viable candidate for CUD since, in the human population, alternatives to drug use are often available.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/jpet.124.002356","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite considerable efforts, there remains no FDA-approved medications for cocaine use disorder (CUD). One strategy to mitigate cocaine craving and relapse is to elevate dopamine (DA). The DA transport inhibitor and releaser d-amphetamine has been shown to decrease cocaine self-administration (SA), although it has abuse liability. Recently, several modafinil analogues reduced cocaine SA in rats and monkeys, including JJC8-088, characterized as "cocaine like" in rats, and JJC8-091, characterized as "atypical" and not SA by rats. The present studies evaluated the reinforcing effects of both compounds in monkeys under several conditions. For Experiment 1, four male cocaine-experienced rhesus monkeys self-administered cocaine (0.001-0.3 mg/kg/injection), JJC8-088 (0.001-0.3 mg/kg/injection), and JJC8-091 (0.1-3.0 mg/kg/injection) under a progressive-ratio (PR) schedule of reinforcement. Both JJC compounds functioned as reinforcers with equal reinforcing strength to cocaine. Although JJC8-091 was less potent than cocaine, JJC8-088 and cocaine had similar potencies. For Experiment 2, one male and two females drug-naïve cynomolgus monkeys responded on a fixed-ratio schedule of food reinforcement. JJC8-091 was self-administered at rates higher than saline in all three monkeys. In Experiment 3, monkeys from Experiment 2 responded under a concurrent drug vs. food choice paradigm and given access to cocaine or JJC8-091 under these conditions. At doses equal to or one-half log-units higher than doses used in Experiment 2, cocaine, but not JJC8-091, was chosen over food. Together, these results demonstrate that while JJC8-091 may be reinforcing under some conditions, its reinforcing strength, in the presence of an alternative reinforcer, is substantially less than cocaine. Significance Statement JJC8-088 and JJC8-091 have shown efficacy is reducing cocaine self-administration in rats and in nonhuman primates. This study found that both compounds maintained self-administration in monkeys responding under several conditions. However, when given access to an alternative reinforcer during the self-administration session, JJC8-091 was not reinforcing, suggesting that JJC8-091 may be a viable candidate for CUD since, in the human population, alternatives to drug use are often available.
期刊介绍:
A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.