Karen Ousey, Emma Woodmansey, Daniel J Fitzgerald, Runi Brownhill
{"title":"Enhanced exploration of the mode of action of a five-layer foam dressing: critical properties to support wound healing.","authors":"Karen Ousey, Emma Woodmansey, Daniel J Fitzgerald, Runi Brownhill","doi":"10.12968/jowc.2024.0255","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this in vitro experimental series was to explore the mode of action of a hydrocellular polyurethane foam dressing (HPFD) and how its advanced features support beneficial interactions with the wound bed to address common barriers to wound healing, thus supporting improved clinical outcomes.</p><p><strong>Method: </strong>Multiple in vitro microbiological tests were performed, assessing prevention of bacterial ingress, surface removal of bacteria, bacterial sequestration and retention into the dressing in a clinically relevant environment. Odour molecule concentrations were measured using gas chromatography and further assays explored matrix metalloproteinase (MMP)-9 retention in the dressing using enzyme linked immunosorbent assay.</p><p><strong>Results: </strong>The HPFD demonstrated marked reductions in bioburden levels across multiple tests. These included prevention of bacterial ingress for seven days, removal of surface bacteria and absorption into the dressing. Further tests identified that most bacteria were sequestered into the hyperabsorbent layer (90.5% for <i>Pseudomonas aeruginosa</i> and 89.6% for meticillin-resistant <i>Staphylococcus aureus</i>). Moreover, the majority of bacteria (99.99% for both test organisms) were retained within the dressing, even upon compression. Additional tests demonstrated a marked reduction of odour molecules following incubation with HPFD and total retention of protease MMP-9 within the dressing.</p><p><strong>Conclusions: </strong>Proactive management of the wound environment with an appropriate advanced wound dressing, such as the HPFD examined in these in vitro investigations, can not only help to minimise the barriers to healing, as observed across this test series by direct interaction with the wound bed, but may, as a result, provide an ideal environment for wound progression with minimal disturbance.</p>","PeriodicalId":17590,"journal":{"name":"Journal of wound care","volume":"33 9","pages":"708-717"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of wound care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12968/jowc.2024.0255","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The aim of this in vitro experimental series was to explore the mode of action of a hydrocellular polyurethane foam dressing (HPFD) and how its advanced features support beneficial interactions with the wound bed to address common barriers to wound healing, thus supporting improved clinical outcomes.
Method: Multiple in vitro microbiological tests were performed, assessing prevention of bacterial ingress, surface removal of bacteria, bacterial sequestration and retention into the dressing in a clinically relevant environment. Odour molecule concentrations were measured using gas chromatography and further assays explored matrix metalloproteinase (MMP)-9 retention in the dressing using enzyme linked immunosorbent assay.
Results: The HPFD demonstrated marked reductions in bioburden levels across multiple tests. These included prevention of bacterial ingress for seven days, removal of surface bacteria and absorption into the dressing. Further tests identified that most bacteria were sequestered into the hyperabsorbent layer (90.5% for Pseudomonas aeruginosa and 89.6% for meticillin-resistant Staphylococcus aureus). Moreover, the majority of bacteria (99.99% for both test organisms) were retained within the dressing, even upon compression. Additional tests demonstrated a marked reduction of odour molecules following incubation with HPFD and total retention of protease MMP-9 within the dressing.
Conclusions: Proactive management of the wound environment with an appropriate advanced wound dressing, such as the HPFD examined in these in vitro investigations, can not only help to minimise the barriers to healing, as observed across this test series by direct interaction with the wound bed, but may, as a result, provide an ideal environment for wound progression with minimal disturbance.
期刊介绍:
Journal of Wound Care (JWC) is the definitive wound-care journal and the leading source of up-to-date research and clinical information on everything related to tissue viability. The journal was first launched in 1992 and aimed at catering to the needs of the multidisciplinary team. Published monthly, the journal’s international audience includes nurses, doctors and researchers specialising in wound management and tissue viability, as well as generalists wishing to enhance their practice.
In addition to cutting edge and state-of-the-art research and practice articles, JWC also covers topics related to wound-care management, education and novel therapies, as well as JWC cases supplements, a supplement dedicated solely to case reports and case series in wound care. All articles are rigorously peer-reviewed by a panel of international experts, comprised of clinicians, nurses and researchers.
Specifically, JWC publishes:
High quality evidence on all aspects of wound care, including leg ulcers, pressure ulcers, the diabetic foot, burns, surgical wounds, wound infection and more
The latest developments and innovations in wound care through both preclinical and preliminary clinical trials of potential new treatments worldwide
In-depth prospective studies of new treatment applications, as well as high-level research evidence on existing treatments
Clinical case studies providing information on how to deal with complex wounds
Comprehensive literature reviews on current concepts and practice, including cost-effectiveness
Updates on the activities of wound care societies around the world.