Discovery of potent allosteric antibodies inhibiting EGFR.

IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL mAbs Pub Date : 2024-01-01 Epub Date: 2024-09-20 DOI:10.1080/19420862.2024.2406548
Léxane Fournier, Lukas Pekar, Birgitta Leuthner, Harald Kolmar, Lars Toleikis, Stefan Becker
{"title":"Discovery of potent allosteric antibodies inhibiting EGFR.","authors":"Léxane Fournier, Lukas Pekar, Birgitta Leuthner, Harald Kolmar, Lars Toleikis, Stefan Becker","doi":"10.1080/19420862.2024.2406548","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we report the discovery of potent anti-epidermal growth factor receptor (EGFR) allosteric heavy-chain antibodies by combining camelid immunization and fluorescence-activated cell sorting (FACS). After immunization and yeast surface display library construction, allosteric clones were obtained by introducing the labeled EGF Fc fusion protein as an additional criterion for FACS. This sorting method enabled the identification of 11 heavy-chain antibodies that did not compete with the orthosteric ligand EGF for the binding to EGFR. These antibodies bind to a triple-negative breast cancer cell line expressing EGFR with affinities in the picomolar to nanomolar range. Those camelid-derived antibodies also exhibit interesting properties by modulating EGFR affinity for EGF. Moreover, they are also able to inhibit EGF-induced downstream signaling pathways. In particular, we identified one clone that is more potent than the approved blocking antibody cetuximab in inhibiting both PI3K/AKT and MAPK/ERK pathways. Our results suggest that allosteric antibodies may be potential new modalities for therapeutics.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2406548"},"PeriodicalIF":5.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418213/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2024.2406548","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we report the discovery of potent anti-epidermal growth factor receptor (EGFR) allosteric heavy-chain antibodies by combining camelid immunization and fluorescence-activated cell sorting (FACS). After immunization and yeast surface display library construction, allosteric clones were obtained by introducing the labeled EGF Fc fusion protein as an additional criterion for FACS. This sorting method enabled the identification of 11 heavy-chain antibodies that did not compete with the orthosteric ligand EGF for the binding to EGFR. These antibodies bind to a triple-negative breast cancer cell line expressing EGFR with affinities in the picomolar to nanomolar range. Those camelid-derived antibodies also exhibit interesting properties by modulating EGFR affinity for EGF. Moreover, they are also able to inhibit EGF-induced downstream signaling pathways. In particular, we identified one clone that is more potent than the approved blocking antibody cetuximab in inhibiting both PI3K/AKT and MAPK/ERK pathways. Our results suggest that allosteric antibodies may be potential new modalities for therapeutics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发现抑制表皮生长因子受体的强效异构抗体。
在这项工作中,我们报告了通过结合驼科动物免疫和荧光激活细胞分选(FACS)发现的强效抗表皮生长因子受体(EGFR)异构重链抗体。在免疫和酵母表面展示文库构建之后,通过引入标记的表皮生长因子受体 Fc 融合蛋白作为 FACS 的附加标准,获得了异构克隆。这种分选方法鉴定出了 11 种重链抗体,它们与表皮生长因子受体的结合不会与正交配体表皮生长因子受体竞争。这些抗体与表达表皮生长因子受体的三阴性乳腺癌细胞系结合,亲和力在皮摩尔到纳摩尔范围内。这些源自骆驼的抗体还通过调节表皮生长因子受体对表皮生长因子受体的亲和力而表现出有趣的特性。此外,它们还能抑制表皮生长因子受体诱导的下游信号通路。特别是,我们发现一种克隆抗体在抑制PI3K/AKT和MAPK/ERK通路方面比已获批准的阻断抗体西妥昔单抗更有效。我们的研究结果表明,异构抗体可能是一种潜在的新治疗方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
mAbs
mAbs 工程技术-仪器仪表
CiteScore
10.70
自引率
11.30%
发文量
77
审稿时长
6-12 weeks
期刊介绍: mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.
期刊最新文献
Sequence-based engineering of pH-sensitive antibodies for tumor targeting or endosomal recycling applications. Systematic analysis of Fc mutations designed to reduce binding to Fc-gamma receptors Navigating large-volume subcutaneous injections of biopharmaceuticals: a systematic review of clinical pipelines and approved products Antibody association in solution: cluster distributions and mechanisms Reducing neonatal Fc receptor binding enhances clearance and brain-to-blood ratio of TfR-delivered bispecific amyloid-β antibody
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1