Prem Pritam, Suvarna Manjre, Manish R Shukla, Meghna Srivastava, Charulata B Prasannan, Damini Jaiswal, Rose Davis, Santanu Dasgupta, Pramod P Wangikar
{"title":"Intracellular metabolomic profiling of Picochlorum sp. under diurnal conditions mimicking outdoor light, temperature, and seasonal variations.","authors":"Prem Pritam, Suvarna Manjre, Manish R Shukla, Meghna Srivastava, Charulata B Prasannan, Damini Jaiswal, Rose Davis, Santanu Dasgupta, Pramod P Wangikar","doi":"10.1007/s11306-024-02170-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study focuses on metabolic profiling of a robust marine green algal strain Picochlorum sp. MCC39 that exhibits resilient growth under diverse outdoor open pond conditions. Given its potential for producing high-value chemicals through metabolic engineering, understanding its metabolic dynamics is crucial for pathway modification.</p><p><strong>Objectives: </strong>This study primarily aimed to investigate the metabolic response of Picochlorum sp. to environmental changes. Unlike heterotrophs, algae are subject to diurnal light and temperature, which affect their growth rates and metabolism. Using an environmental photobioreactor (ePBR), we explored how the algal strain adapts to fluctuations in light intensities and temperature within a simulated pond environment.</p><p><strong>Methods: </strong>We performed a reverse phase ion pairing-LC/MS-MS based metabolome profiling of the MCC39 strain cultivated in simulated pond conditions in ePBR. The experimental setup included diurnal and bi-seasonal variations in light intensities and temperature.</p><p><strong>Results: </strong>The metabolome profile revealed significant differences in 85 metabolites, including amino acids, carboxylic acids, sugar phosphates, purines, pyrimidines, and dipeptides, which exhibited up to 25-fold change in relative concentration with diurnal variations. Seasonal variations also influenced the production of storage molecules, revealing a discernible pattern. The accumulation pattern of metabolites involved in cellular wall formation and energy generation indicated a well-coordinated initiation of photosynthesis and the Calvin cycle with the onset of light.</p><p><strong>Conclusion: </strong>The results contribute to a deeper understanding of the adaptability and metabolic response of Picochlorum sp., laying the groundwork for future advancements in algal strain modification.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 5","pages":"107"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-024-02170-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: This study focuses on metabolic profiling of a robust marine green algal strain Picochlorum sp. MCC39 that exhibits resilient growth under diverse outdoor open pond conditions. Given its potential for producing high-value chemicals through metabolic engineering, understanding its metabolic dynamics is crucial for pathway modification.
Objectives: This study primarily aimed to investigate the metabolic response of Picochlorum sp. to environmental changes. Unlike heterotrophs, algae are subject to diurnal light and temperature, which affect their growth rates and metabolism. Using an environmental photobioreactor (ePBR), we explored how the algal strain adapts to fluctuations in light intensities and temperature within a simulated pond environment.
Methods: We performed a reverse phase ion pairing-LC/MS-MS based metabolome profiling of the MCC39 strain cultivated in simulated pond conditions in ePBR. The experimental setup included diurnal and bi-seasonal variations in light intensities and temperature.
Results: The metabolome profile revealed significant differences in 85 metabolites, including amino acids, carboxylic acids, sugar phosphates, purines, pyrimidines, and dipeptides, which exhibited up to 25-fold change in relative concentration with diurnal variations. Seasonal variations also influenced the production of storage molecules, revealing a discernible pattern. The accumulation pattern of metabolites involved in cellular wall formation and energy generation indicated a well-coordinated initiation of photosynthesis and the Calvin cycle with the onset of light.
Conclusion: The results contribute to a deeper understanding of the adaptability and metabolic response of Picochlorum sp., laying the groundwork for future advancements in algal strain modification.
期刊介绍:
Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to:
metabolomic applications within man, including pre-clinical and clinical
pharmacometabolomics for precision medicine
metabolic profiling and fingerprinting
metabolite target analysis
metabolomic applications within animals, plants and microbes
transcriptomics and proteomics in systems biology
Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.