Integrating large language models in care, research, and education in multiple sclerosis management.

IF 4.8 2区 医学 Q1 CLINICAL NEUROLOGY Multiple Sclerosis Journal Pub Date : 2024-10-01 Epub Date: 2024-09-23 DOI:10.1177/13524585241277376
Hernan Inojosa, Isabel Voigt, Judith Wenk, Dyke Ferber, Isabella Wiest, Dario Antweiler, Eva Weicken, Stephen Gilbert, Jakob Nikolas Kather, Katja Akgün, Tjalf Ziemssen
{"title":"Integrating large language models in care, research, and education in multiple sclerosis management.","authors":"Hernan Inojosa, Isabel Voigt, Judith Wenk, Dyke Ferber, Isabella Wiest, Dario Antweiler, Eva Weicken, Stephen Gilbert, Jakob Nikolas Kather, Katja Akgün, Tjalf Ziemssen","doi":"10.1177/13524585241277376","DOIUrl":null,"url":null,"abstract":"<p><p>Use of techniques derived from generative artificial intelligence (AI), specifically large language models (LLMs), offer a transformative potential on the management of multiple sclerosis (MS). Recent LLMs have exhibited remarkable skills in producing and understanding human-like texts. The integration of AI in imaging applications and the deployment of foundation models for the classification and prognosis of disease course, including disability progression and even therapy response, have received considerable attention. However, the use of LLMs within the context of MS remains relatively underexplored. LLMs have the potential to support several activities related to MS management. Clinical decision support systems could help selecting proper disease-modifying therapies; AI-based tools could leverage unstructured real-world data for research or virtual tutors may provide adaptive education materials for neurologists and people with MS in the foreseeable future. In this focused review, we explore practical applications of LLMs across the continuum of MS management as an initial scope for future analyses, reflecting on regulatory hurdles and the indispensable role of human supervision.</p>","PeriodicalId":18874,"journal":{"name":"Multiple Sclerosis Journal","volume":" ","pages":"1392-1401"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514324/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiple Sclerosis Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13524585241277376","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Use of techniques derived from generative artificial intelligence (AI), specifically large language models (LLMs), offer a transformative potential on the management of multiple sclerosis (MS). Recent LLMs have exhibited remarkable skills in producing and understanding human-like texts. The integration of AI in imaging applications and the deployment of foundation models for the classification and prognosis of disease course, including disability progression and even therapy response, have received considerable attention. However, the use of LLMs within the context of MS remains relatively underexplored. LLMs have the potential to support several activities related to MS management. Clinical decision support systems could help selecting proper disease-modifying therapies; AI-based tools could leverage unstructured real-world data for research or virtual tutors may provide adaptive education materials for neurologists and people with MS in the foreseeable future. In this focused review, we explore practical applications of LLMs across the continuum of MS management as an initial scope for future analyses, reflecting on regulatory hurdles and the indispensable role of human supervision.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在多发性硬化症管理的护理、研究和教育中整合大型语言模型。
人工智能(AI)中的生成技术,特别是大型语言模型(LLMs),为多发性硬化症(MS)的治疗提供了变革性的潜力。最近的大型语言模型在生成和理解类人文本方面表现出了卓越的技能。人工智能在成像应用中的整合,以及用于疾病过程分类和预后(包括残疾进展甚至治疗反应)的基础模型的部署,受到了广泛关注。然而,LLMs 在多发性硬化症方面的应用仍相对欠缺。LLMs 具有支持与多发性硬化症管理相关的多项活动的潜力。临床决策支持系统可以帮助选择适当的疾病改变疗法;基于人工智能的工具可以利用非结构化的真实世界数据进行研究;在可预见的未来,虚拟导师可以为神经学家和多发性硬化症患者提供自适应教育材料。在这篇重点综述中,我们探讨了 LLM 在多发性硬化症管理过程中的实际应用,作为未来分析的初步范围,并反思了监管障碍和人类监督不可或缺的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multiple Sclerosis Journal
Multiple Sclerosis Journal 医学-临床神经学
CiteScore
10.90
自引率
6.90%
发文量
186
审稿时长
3-8 weeks
期刊介绍: Multiple Sclerosis Journal is a peer-reviewed international journal that focuses on all aspects of multiple sclerosis, neuromyelitis optica and other related autoimmune diseases of the central nervous system. The journal for your research in the following areas: * __Biologic basis:__ pathology, myelin biology, pathophysiology of the blood/brain barrier, axo-glial pathobiology, remyelination, virology and microbiome, immunology, proteomics * __Epidemology and genetics:__ genetics epigenetics, epidemiology * __Clinical and Neuroimaging:__ clinical neurology, biomarkers, neuroimaging and clinical outcome measures * __Therapeutics and rehabilitation:__ therapeutics, rehabilitation, psychology, neuroplasticity, neuroprotection, and systematic management Print ISSN: 1352-4585
期刊最新文献
Cryptogenic organising pneumonia in patients treated with ocrelizumab. Ocrelizumab-associated cryptogenic organizing pneumonia in multiple sclerosis: Two case reports and comprehensive literature review. Vaccination as a risk factor for pediatric multiple sclerosis: Insights from a retrospective case-control study. Secondary organising pneumonia associated to COVID-19 infection in patients with central nervous system inflammatory demyelinating diseases treated with anti-CD20 therapies. Development and initial validation of the Cognitive Change Scale (CCS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1