Insights into small-molecule compound CY-158-11 antibacterial activity against Staphylococcus aureus.

IF 3.7 2区 生物学 Q2 MICROBIOLOGY mSphere Pub Date : 2024-10-29 Epub Date: 2024-09-23 DOI:10.1128/msphere.00643-24
Li Shen, Junhong Shi, Weihua Han, Jingyi Yu, Xinru Yuan, Haojin Gao, Yu Huang, Jianbo Lv, Cailing Wan, Peiyao Zhou, Yanghua Xiao, Jiao Zhang, Bingjie Wang, Rongrong Hu, Fangyou Yu
{"title":"Insights into small-molecule compound CY-158-11 antibacterial activity against <i>Staphylococcus aureus</i>.","authors":"Li Shen, Junhong Shi, Weihua Han, Jingyi Yu, Xinru Yuan, Haojin Gao, Yu Huang, Jianbo Lv, Cailing Wan, Peiyao Zhou, Yanghua Xiao, Jiao Zhang, Bingjie Wang, Rongrong Hu, Fangyou Yu","doi":"10.1128/msphere.00643-24","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread prevalence and dissemination of antibiotic-resistant bacteria, coupled with the diminishing supply of new antibiotics, emphasize the pressing necessity for the exploration of innovative antibacterial agents. Previously, we detailed the impact of the small-molecule compound CY-158-11 on <i>S. aureus</i> biofilm. By hindering adhesion and PIA-mediated biofilm formation, subinhibitory concentrations of CY-158-11 exhibit antibiofilm activity toward <i>S. aureus</i>. Here, we sought to elucidate the antibacterial activity and mode of action of this compound. Upon CY-158-11 treatment in culture, the inhibition of bacterial growth, coupled with MBC to MIC of >4, indicated that CY-158-11 exerted a bacteriostatic effect. Particularly, CY-158-11 showed strong antibacterial activity against a wide variety of <i>S. aureus</i>, including multidrug-resistant bacteria. We found that CY-158-11 promoted the permeability of cell membrane and propidium iodide absorption as well as caused the dissipation of membrane potential. The effect of CY-158-11 on the mammalian cytoplasmic membrane was measured using hemolytic and cytotoxicity assays, and the skin irritation and systemic toxicity of the drug were measured by injecting the compound into the skin and tail vein of mice. Moreover, CY-158-11 exhibited considerable efficacy in a subcutaneous abscess mouse model of <i>S. aureus</i> infection. In conclusion, CY-158-11 possesses antibacterial properties, including inhibition of bacterial growth, damage to cell membranes, and treatment of skin abscesses, which can be a promising therapeutic option for combating <i>S. aureus</i>.</p><p><strong>Importance: </strong>The combination of the rising incidence of antibiotic resistance and the shrinking antibiotic pipeline has raised concern about the postantibiotic era. New antibacterial agents and targets are required to combat <i>S. aureus</i>-associated infections. In this study, we identified a maleimide-diselenide hybrid compound CY-158-11 exhibiting antibacterial activity against <i>S. aureus in vitro</i> and <i>in vivo</i> at relatively low concentrations. Furthermore, the investigation of its mode of action revealed that CY-158-11 can selectively perturb the cytoplasmic membrane of bacteria without harming mammalian cells or mouse organs. Thus, CY-158-11 is a compelling novel drug for development as a new therapy for <i>S. aureus</i> infections.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520288/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00643-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread prevalence and dissemination of antibiotic-resistant bacteria, coupled with the diminishing supply of new antibiotics, emphasize the pressing necessity for the exploration of innovative antibacterial agents. Previously, we detailed the impact of the small-molecule compound CY-158-11 on S. aureus biofilm. By hindering adhesion and PIA-mediated biofilm formation, subinhibitory concentrations of CY-158-11 exhibit antibiofilm activity toward S. aureus. Here, we sought to elucidate the antibacterial activity and mode of action of this compound. Upon CY-158-11 treatment in culture, the inhibition of bacterial growth, coupled with MBC to MIC of >4, indicated that CY-158-11 exerted a bacteriostatic effect. Particularly, CY-158-11 showed strong antibacterial activity against a wide variety of S. aureus, including multidrug-resistant bacteria. We found that CY-158-11 promoted the permeability of cell membrane and propidium iodide absorption as well as caused the dissipation of membrane potential. The effect of CY-158-11 on the mammalian cytoplasmic membrane was measured using hemolytic and cytotoxicity assays, and the skin irritation and systemic toxicity of the drug were measured by injecting the compound into the skin and tail vein of mice. Moreover, CY-158-11 exhibited considerable efficacy in a subcutaneous abscess mouse model of S. aureus infection. In conclusion, CY-158-11 possesses antibacterial properties, including inhibition of bacterial growth, damage to cell membranes, and treatment of skin abscesses, which can be a promising therapeutic option for combating S. aureus.

Importance: The combination of the rising incidence of antibiotic resistance and the shrinking antibiotic pipeline has raised concern about the postantibiotic era. New antibacterial agents and targets are required to combat S. aureus-associated infections. In this study, we identified a maleimide-diselenide hybrid compound CY-158-11 exhibiting antibacterial activity against S. aureus in vitro and in vivo at relatively low concentrations. Furthermore, the investigation of its mode of action revealed that CY-158-11 can selectively perturb the cytoplasmic membrane of bacteria without harming mammalian cells or mouse organs. Thus, CY-158-11 is a compelling novel drug for development as a new therapy for S. aureus infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深入了解小分子化合物 CY-158-11 对金黄色葡萄球菌的抗菌活性。
抗生素耐药菌的广泛流行和传播,以及新抗生素供应的日益减少,凸显了探索创新抗菌剂的迫切需要。此前,我们详细研究了小分子化合物 CY-158-11 对金黄色葡萄球菌生物膜的影响。通过阻碍粘附和 PIA 介导的生物膜形成,亚抑制浓度的 CY-158-11 对金黄色葡萄球菌具有抗生物膜活性。在此,我们试图阐明这种化合物的抗菌活性和作用模式。在培养基中处理 CY-158-11 后,细菌生长受到抑制,MBC 与 MIC 之比大于 4,这表明 CY-158-11 具有抑菌作用。特别是,CY-158-11 对包括耐多药细菌在内的多种金黄色葡萄球菌具有很强的抗菌活性。我们发现,CY-158-11 能促进细胞膜的通透性和碘化丙啶的吸收,并能引起膜电位的消散。通过溶血和细胞毒性实验测定了 CY-158-11 对哺乳动物细胞质膜的影响,并通过向小鼠皮肤和尾静脉注射该化合物测定了其皮肤刺激性和全身毒性。此外,CY-158-11 在金黄色葡萄球菌感染的小鼠皮下脓肿模型中也表现出相当的疗效。总之,CY-158-11 具有抗菌特性,包括抑制细菌生长、破坏细胞膜和治疗皮肤脓肿,是抗击金黄色葡萄球菌的一种有前途的治疗选择:抗生素耐药性发生率的上升和抗生素管道的缩减共同引发了人们对后抗生素时代的担忧。需要新的抗菌药物和靶点来对抗金黄色葡萄球菌相关感染。在这项研究中,我们发现了一种马来酰亚胺-二硒化物杂交化合物 CY-158-11,该化合物在体外和体内以相对较低的浓度对金黄色葡萄球菌具有抗菌活性。此外,对其作用模式的研究表明,CY-158-11 可以选择性地扰乱细菌的细胞质膜,而不会伤害哺乳动物细胞或小鼠器官。因此,CY-158-11 是一种值得开发的新型药物,可作为治疗金黄色葡萄球菌感染的新疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
mSphere
mSphere Immunology and Microbiology-Microbiology
CiteScore
8.50
自引率
2.10%
发文量
192
审稿时长
11 weeks
期刊介绍: mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.
期刊最新文献
Erratum for Choi et al., "Human saliva modifies growth, biofilm architecture, and competitive behaviors of oral streptococci". mSphere of Influence: Venturing outside the biology canon with sex and gender. Pneumococcal extracellular vesicles mediate horizontal gene transfer via the transformation machinery. Adaptation to zinc restriction in Streptococcus agalactiae: role of the ribosomal protein and zinc-importers regulated by AdcR. Analytical measuring interval, linearity, and precision of serology assays for detection of SARS-CoV-2 antibodies according to CLSI guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1