GFAP expression in the BRAIN during human postnatal development.

IF 4 2区 医学 Q1 CLINICAL NEUROLOGY Neuropathology and Applied Neurobiology Pub Date : 2024-10-01 DOI:10.1111/nan.13007
Lauren Luijerink, Karen Waters, Michael Rodriguez, Rita Machaalani
{"title":"GFAP expression in the BRAIN during human postnatal development.","authors":"Lauren Luijerink, Karen Waters, Michael Rodriguez, Rita Machaalani","doi":"10.1111/nan.13007","DOIUrl":null,"url":null,"abstract":"<p><p>Glial fibrillary acidic protein (GFAP) immunohistochemistry was investigated in the developing human brain using two measures; the number of GFAP-positive cells (density, GFAP+/mm<sup>2</sup>), and a reactivity score (R-score), which we recently introduced to indicate astrogliosis, with scores ≥120 indicative of pathological processes. The primary aim was to report on GFAP expression and cell soma size in 26 microscopically defined regions of the amygdala, basal ganglia, cerebellum, hippocampus and medulla, and to determine whether they are affected by postconceptional age (PCA) from 40 to 83 weeks. The secondary aim was to determine if GFAP expression differs according to the classification of sudden infant death syndrome (SIDS) as opposed to infant deaths of known causes, or for the presence of major SIDS risk factors of male sex, cigarette smoke exposure, upper respiratory tract infection (URTI), bed-sharing and prone sleeping. The cerebellar molecular layer was void of GFAP+ cells, while the internal granular layer (IGL) had the highest density, with >60% of infants having an R-Score >120. GFAP expression decreased with increasing PCA in the entorhinal and temporal cortex, subiculum and regions of the cerebellum and medulla. GFAP cell soma size corresponded with astrogliosis score and no effect of PCA was evident. Various region-dependent GFAP expressional differences were seen according to SIDS classification and the risk factors studied. The findings indicate that the density of GFAP decreases in specific regions of the brain within the first year of postnatal development, and that reactive astrocytes are common, particularly within the early postnatal months.</p>","PeriodicalId":19151,"journal":{"name":"Neuropathology and Applied Neurobiology","volume":"50 5","pages":"e13007"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropathology and Applied Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nan.13007","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glial fibrillary acidic protein (GFAP) immunohistochemistry was investigated in the developing human brain using two measures; the number of GFAP-positive cells (density, GFAP+/mm2), and a reactivity score (R-score), which we recently introduced to indicate astrogliosis, with scores ≥120 indicative of pathological processes. The primary aim was to report on GFAP expression and cell soma size in 26 microscopically defined regions of the amygdala, basal ganglia, cerebellum, hippocampus and medulla, and to determine whether they are affected by postconceptional age (PCA) from 40 to 83 weeks. The secondary aim was to determine if GFAP expression differs according to the classification of sudden infant death syndrome (SIDS) as opposed to infant deaths of known causes, or for the presence of major SIDS risk factors of male sex, cigarette smoke exposure, upper respiratory tract infection (URTI), bed-sharing and prone sleeping. The cerebellar molecular layer was void of GFAP+ cells, while the internal granular layer (IGL) had the highest density, with >60% of infants having an R-Score >120. GFAP expression decreased with increasing PCA in the entorhinal and temporal cortex, subiculum and regions of the cerebellum and medulla. GFAP cell soma size corresponded with astrogliosis score and no effect of PCA was evident. Various region-dependent GFAP expressional differences were seen according to SIDS classification and the risk factors studied. The findings indicate that the density of GFAP decreases in specific regions of the brain within the first year of postnatal development, and that reactive astrocytes are common, particularly within the early postnatal months.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类出生后大脑发育过程中 GFAP 的表达。
在发育中的人脑中采用两种方法对胶质纤维酸性蛋白(GFAP)免疫组化进行了研究:GFAP阳性细胞的数量(密度,GFAP+/mm2)和反应性评分(R-score),我们最近引入了R-score来表示星形胶质细胞增多,评分≥120表示病理过程。研究的主要目的是报告杏仁核、基底节、小脑、海马和延髓等26个显微定义区域的GFAP表达和细胞体大小,并确定它们是否受40周至83周受孕后年龄(PCA)的影响。次要目的是确定婴儿猝死综合症(SIDS)的分类与已知原因导致的婴儿死亡相比,或婴儿猝死综合症的主要风险因素(男性、吸烟、上呼吸道感染(URTI)、同床和俯卧睡姿)的存在,GFAP的表达是否有所不同。小脑分子层没有GFAP+细胞,而内部颗粒层(IGL)的密度最高,60%以上的婴儿R-Score大于120。在内侧和颞叶皮层、子网以及小脑和延髓区域,GFAP表达随着PCA的增加而减少。GFAP 细胞体的大小与星形胶质细胞增多的评分相对应,而 PCA 的影响并不明显。根据婴儿猝死综合症的分类和所研究的风险因素,不同区域的 GFAP 表达存在差异。研究结果表明,在出生后第一年的发育过程中,大脑特定区域的 GFAP 密度会降低,反应性星形胶质细胞很常见,尤其是在出生后的最初几个月。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.20
自引率
2.00%
发文量
87
审稿时长
6-12 weeks
期刊介绍: Neuropathology and Applied Neurobiology is an international journal for the publication of original papers, both clinical and experimental, on problems and pathological processes in neuropathology and muscle disease. Established in 1974, this reputable and well respected journal is an international journal sponsored by the British Neuropathological Society, one of the world leading societies for Neuropathology, pioneering research and scientific endeavour with a global membership base. Additionally members of the British Neuropathological Society get 50% off the cost of print colour on acceptance of their article.
期刊最新文献
Nanopore sequencing identifies Borrelia miyamotoi as an unexpected cause of meningitis after B cell depletion. Phenotypic and epigenetic heterogeneity in FGFR2-fused glial and glioneuronal tumours. Microglial activation without peripheral immune cell infiltration characterises mouse and human cerebral small vessel disease. Microglia induce an interferon-stimulated gene expression profile in glioblastoma and increase glioblastoma resistance to temozolomide. GFAP expression in the BRAIN during human postnatal development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1