Specific mode electroacupuncture stimulation opens the blood-brain barrier of the infarcted border zone in rats during MCAO/R recovery via modulation of tight junction protein expression by VEGFA and NF-κB.

IF 1.6 4区 医学 Q4 NEUROSCIENCES Neuroreport Pub Date : 2024-11-06 Epub Date: 2024-09-19 DOI:10.1097/WNR.0000000000002098
Kecheng Qian, Mengyuan Dai, Lin Gan, Qinyu Ye, Xingying Wu, Tianyu Qian, Congcong Ma, Xianming Lin
{"title":"Specific mode electroacupuncture stimulation opens the blood-brain barrier of the infarcted border zone in rats during MCAO/R recovery via modulation of tight junction protein expression by VEGFA and NF-κB.","authors":"Kecheng Qian, Mengyuan Dai, Lin Gan, Qinyu Ye, Xingying Wu, Tianyu Qian, Congcong Ma, Xianming Lin","doi":"10.1097/WNR.0000000000002098","DOIUrl":null,"url":null,"abstract":"<p><p>The blood-brain barrier (BBB) strictly limits the entry of most exogenous therapeutic drugs into the brain, which brings great challenges to the drug treatment of refractory central diseases, including the treatment of ischemic stroke. Our previous studies have shown that specific mode electroacupuncture stimulation (SMES) can temporarily open the BBB, but with the mechanisms largely unknown. This study explored whether SMES opens the BBB in the infarcted border zone of rats during middle cerebral artery occlusion/reperfusion recovery, and whether this is related to p65 or vascular endothelial growth factor A (VEGFA) modulation of tight junction protein expression through in vivo and in vitro studies. Evans blue, FITC-dextran, mouse-derived nerve growth factor (NGF), and transendothelial electrical resistance values were used to evaluate the permeability of the BBB. Additionally, microvascular endothelial cells and astrocytes were utilized for in vitro study. Immunofluorescence, immunohistochemistry, western blot, and ELISA were employed to assess related protein expression. SMES significantly increased vascular permeability for Evans blue and NGF in the infarcted border zone, and increased the expression of VEGFA by activating p-p65, thereby reducing the expression of tight junction proteins Occludin and ZO-1. Correspondingly, oxygen glucose deprivation/reoxygenation activated p-p65 in and induced VEGFA secretion from astrocytes in vitro. Their conditioned medium reduced the expression of Occludin in bEnd.3 cells and increased the permeability of FITC-dextran. The mechanism of SMES opening infarcted border zone BBB is partly related to its actions on p65, VEGFA, and tight junction proteins.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"1052-1060"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002098","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The blood-brain barrier (BBB) strictly limits the entry of most exogenous therapeutic drugs into the brain, which brings great challenges to the drug treatment of refractory central diseases, including the treatment of ischemic stroke. Our previous studies have shown that specific mode electroacupuncture stimulation (SMES) can temporarily open the BBB, but with the mechanisms largely unknown. This study explored whether SMES opens the BBB in the infarcted border zone of rats during middle cerebral artery occlusion/reperfusion recovery, and whether this is related to p65 or vascular endothelial growth factor A (VEGFA) modulation of tight junction protein expression through in vivo and in vitro studies. Evans blue, FITC-dextran, mouse-derived nerve growth factor (NGF), and transendothelial electrical resistance values were used to evaluate the permeability of the BBB. Additionally, microvascular endothelial cells and astrocytes were utilized for in vitro study. Immunofluorescence, immunohistochemistry, western blot, and ELISA were employed to assess related protein expression. SMES significantly increased vascular permeability for Evans blue and NGF in the infarcted border zone, and increased the expression of VEGFA by activating p-p65, thereby reducing the expression of tight junction proteins Occludin and ZO-1. Correspondingly, oxygen glucose deprivation/reoxygenation activated p-p65 in and induced VEGFA secretion from astrocytes in vitro. Their conditioned medium reduced the expression of Occludin in bEnd.3 cells and increased the permeability of FITC-dextran. The mechanism of SMES opening infarcted border zone BBB is partly related to its actions on p65, VEGFA, and tight junction proteins.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特定模式电针刺激通过调节 VEGFA 和 NF-κB 的紧密连接蛋白表达,在 MCAO/R 恢复期打开大鼠梗死边界区的血脑屏障。
血脑屏障(BBB)严格限制了大多数外源性治疗药物进入大脑,这给包括缺血性中风治疗在内的难治性中枢疾病的药物治疗带来了巨大挑战。我们之前的研究表明,特定模式电针刺激(SMES)可以暂时打开BBB,但其机制尚不清楚。本研究通过体内和体外研究,探讨在大脑中动脉闭塞/再灌注恢复期,SMES是否能打开大鼠梗死边界区的BBB,以及这是否与p65或血管内皮生长因子A(VEGFA)调节紧密连接蛋白的表达有关。伊文思蓝、FITC-葡聚糖、小鼠神经生长因子(NGF)和跨内皮电阻值被用来评估 BBB 的通透性。此外,还利用微血管内皮细胞和星形胶质细胞进行体外研究。免疫荧光、免疫组织化学、Western 印迹和 ELISA 被用来评估相关蛋白质的表达。SMES能明显增加梗死边界区血管对伊文思蓝和NGF的通透性,并通过激活p-p65增加血管内皮生长因子的表达,从而减少紧密连接蛋白Occludin和ZO-1的表达。相应地,氧糖剥夺/复氧激活了体外星形胶质细胞中的 p-p65,并诱导其分泌 VEGFA。它们的条件培养基减少了 bEnd.3 细胞中 Occludin 的表达,并增加了 FITC-葡聚糖的通透性。SMES打开梗死边界区BBB的机制部分与其对p65、血管内皮生长因子和紧密连接蛋白的作用有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroreport
Neuroreport 医学-神经科学
CiteScore
3.20
自引率
0.00%
发文量
150
审稿时长
1 months
期刊介绍: NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool. The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works. We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.
期刊最新文献
Different dorsolateral prefrontal activation during an emotionalautobiographical memory task between male and female depressed individuals: a fNIRS study. Reduced glutathione attenuates pediatric sepsis-associated encephalopathy by inhibiting inflammatory cytokine release and mitigating lipid peroxidation-induced brain injury. The involvement of lidocaine in amyloid-β1-42-dependent mitochondrial dysfunction and apoptosis in hippocampal neurons via nerve growth factor-protein kinase B pathway. Topological organization of the brain network in thyroid-associated ophthalmopathy using graph theoretical analysis. Abnormal metabolites in the dorsolateral prefrontal cortex of female epilepsy patients with migraine without aura.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1