The emerging role of AI in enhancing intratumoral immunotherapy care.

Q2 Medicine Oncotarget Pub Date : 2024-09-17 DOI:10.18632/oncotarget.28643
Abin Sajan, Abdallah Lamane, Asad Baig, Korentin Le Floch, Laurent Dercle
{"title":"The emerging role of AI in enhancing intratumoral immunotherapy care.","authors":"Abin Sajan, Abdallah Lamane, Asad Baig, Korentin Le Floch, Laurent Dercle","doi":"10.18632/oncotarget.28643","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of immunotherapy (IO), and more recently intratumoral IO presents a novel approach to cancer treatment which can enhance immune responses while allowing combination therapy and reducing systemic adverse events. These techniques are intended to change the therapeutic paradigm of oncology care, and means that traditional assessment methods are inadequate, underlining the importance of adopting innovative approaches. Artificial intelligence (AI) with machine learning algorithms and radiomics are promising approaches, offering new insights into patient care by analyzing complex imaging data to identify biomarkers to refine diagnosis, guide interventions, predict treatment responses, and adapt therapeutic strategies. In this editorial, we explore how integrating these technologies could revolutionize personalized oncology. We discuss their potential to enhance the survival and quality of life of patients treated with intratumoral IO by improving treatment effectiveness and minimizing side effects, potentially reshaping practice guidelines. We also identify areas for future research and review clinical trials to confirm the efficacy of these promising approaches.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"635-637"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407757/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncotarget","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncotarget.28643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of immunotherapy (IO), and more recently intratumoral IO presents a novel approach to cancer treatment which can enhance immune responses while allowing combination therapy and reducing systemic adverse events. These techniques are intended to change the therapeutic paradigm of oncology care, and means that traditional assessment methods are inadequate, underlining the importance of adopting innovative approaches. Artificial intelligence (AI) with machine learning algorithms and radiomics are promising approaches, offering new insights into patient care by analyzing complex imaging data to identify biomarkers to refine diagnosis, guide interventions, predict treatment responses, and adapt therapeutic strategies. In this editorial, we explore how integrating these technologies could revolutionize personalized oncology. We discuss their potential to enhance the survival and quality of life of patients treated with intratumoral IO by improving treatment effectiveness and minimizing side effects, potentially reshaping practice guidelines. We also identify areas for future research and review clinical trials to confirm the efficacy of these promising approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能在加强肿瘤内免疫疗法护理方面的新兴作用。
免疫疗法(IO)以及最近出现的肿瘤内免疫疗法为癌症治疗提供了一种新方法,它可以增强免疫反应,同时允许联合治疗并减少全身不良反应。这些技术旨在改变肿瘤护理的治疗模式,这意味着传统的评估方法是不够的,突出了采用创新方法的重要性。人工智能(AI)与机器学习算法和放射组学是前景广阔的方法,通过分析复杂的成像数据来确定生物标记物,从而完善诊断、指导干预、预测治疗反应并调整治疗策略,为患者护理提供新的见解。在这篇社论中,我们将探讨如何整合这些技术来彻底改变个性化肿瘤学。我们讨论了这些技术通过提高治疗效果和减少副作用来提高瘤内 IO 治疗患者的生存率和生活质量的潜力,从而有可能重塑实践指南。我们还确定了未来的研究领域,并回顾了临床试验,以确认这些前景广阔的方法的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Oncotarget
Oncotarget Oncogenes-CELL BIOLOGY
CiteScore
6.60
自引率
0.00%
发文量
129
审稿时长
1.5 months
期刊介绍: Information not localized
期刊最新文献
Advancements in cell-penetrating monoclonal antibody treatment. B7-H4: A potential therapeutic target in adenoid cystic carcinoma. Computed tomography-based radiomics and body composition model for predicting hepatic decompensation. Mesenchymal stem cells - the secret agents of cancer immunotherapy: Promises, challenges, and surprising twists. Retraction: Hyperglycemia via activation of thromboxane A2 receptor impairs the integrity and function of blood-brain barrier in microvascular endothelial cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1