Rosa Bordone, Devon Michael Ivy, Rodrigo D’Amico, Martina Barba, Miriam Gaggianesi, Fiorella Di Pastena, Bianca Cesaro, Francesca Bufalieri, Alessio Balzerano, Enrico De Smaele, Giuseppe Giannini, Lucia Di Marcotullio, Alessandro Fatica, Giorgio Stassi, Laura Di Magno, Sonia Coni, Gianluca Canettieri
{"title":"MYC upstream region orchestrates resistance to PI3K inhibitors in cancer cells through FOXO3a-mediated autophagic adaptation","authors":"Rosa Bordone, Devon Michael Ivy, Rodrigo D’Amico, Martina Barba, Miriam Gaggianesi, Fiorella Di Pastena, Bianca Cesaro, Francesca Bufalieri, Alessio Balzerano, Enrico De Smaele, Giuseppe Giannini, Lucia Di Marcotullio, Alessandro Fatica, Giorgio Stassi, Laura Di Magno, Sonia Coni, Gianluca Canettieri","doi":"10.1038/s41388-024-03170-6","DOIUrl":null,"url":null,"abstract":"The MYC oncogene is frequently overexpressed in tumors and inhibition of its translation is considered an attractive therapeutic opportunity. Despite numerous reports proposing an internal ribosome entry site (IRES) within the MYC Upstream Region (MYC UR) to sustain MYC translation during cellular stress or chemotherapy, conflicting evidence remains regarding the validity of such a mechanism. Through comprehensive investigations in MYC-driven Colorectal Cancer (CRC) and Burkitt Lymphoma (BL) cells, we demonstrate that MYC UR does not facilitate cap-independent translation, but instead orchestrates resistance to PI3K inhibitors. Genomic deletion of MYC UR neither impacts MYC protein levels nor viability in CRC cells, either untreated or exposed to cellular stress. However, in response to PI3K inhibitors, MYC UR drives a FOXO3a-dependent transcriptional upregulation of MYC, conferring drug resistance. This resistance is mediated by enhanced autophagic flux, governed by MYC, and blockade of autophagy sensitizes CRC cells to PI3K inhibition in vitro and in vivo. Remarkably, BL cells lacking the translocation of MYC UR exhibit sensitivity to PI3K inhibitors, whereas MYC UR-translocated cells respond to these drugs only when autophagy is inhibited. These findings challenge previous notions regarding IRES-mediated translation and highlight a promising strategy to overcome resistance to PI3K inhibitors in MYC-driven malignancies, offering potential clinical implications for CRC and BL treatment.","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":"43 46","pages":"3349-3365"},"PeriodicalIF":6.9000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41388-024-03170-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41388-024-03170-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The MYC oncogene is frequently overexpressed in tumors and inhibition of its translation is considered an attractive therapeutic opportunity. Despite numerous reports proposing an internal ribosome entry site (IRES) within the MYC Upstream Region (MYC UR) to sustain MYC translation during cellular stress or chemotherapy, conflicting evidence remains regarding the validity of such a mechanism. Through comprehensive investigations in MYC-driven Colorectal Cancer (CRC) and Burkitt Lymphoma (BL) cells, we demonstrate that MYC UR does not facilitate cap-independent translation, but instead orchestrates resistance to PI3K inhibitors. Genomic deletion of MYC UR neither impacts MYC protein levels nor viability in CRC cells, either untreated or exposed to cellular stress. However, in response to PI3K inhibitors, MYC UR drives a FOXO3a-dependent transcriptional upregulation of MYC, conferring drug resistance. This resistance is mediated by enhanced autophagic flux, governed by MYC, and blockade of autophagy sensitizes CRC cells to PI3K inhibition in vitro and in vivo. Remarkably, BL cells lacking the translocation of MYC UR exhibit sensitivity to PI3K inhibitors, whereas MYC UR-translocated cells respond to these drugs only when autophagy is inhibited. These findings challenge previous notions regarding IRES-mediated translation and highlight a promising strategy to overcome resistance to PI3K inhibitors in MYC-driven malignancies, offering potential clinical implications for CRC and BL treatment.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.