{"title":"Suppression of SlHDT1 expression increases fruit yield and decreases drought and salt tolerance in tomato.","authors":"Jun-E Guo, Huihui Wang","doi":"10.1007/s11103-024-01503-3","DOIUrl":null,"url":null,"abstract":"<p><p>Histone deacetylation, one of most important types of post-translational modification, plays multiple indispensable roles in plant growth and development and abiotic stress responses. However, little information about the roles of histone deacetylase in regulating inflorescence architecture, fruit yield, and stress responses is available in tomato. Functional characterization revealed that SlHDT1 participated in the control of inflorescence architecture and fruit yield by regulating auxin signalling, and influenced tolerance to drought and salt stresses by governing abscisic acid (ABA) signalling. More inflorescence branches and higher fruit yield, which were influenced by auxin signalling, were observed in SlHDT1-RNAi transgenic plants. Moreover, tolerance to drought and salt stresses was decreased in SlHDT1-RNAi transgenic lines compared with the wild type (WT). Changes in parameters related to the stress response, including decreases in survival rate, chlorophyll content, relative water content (RWC), proline content, catalase (CAT) activity and ABA content and an increase in malonaldehyde (MDA) content, were observed in SlHDT1-RNAi transgenic lines. In addition, the RNA-seq analysis revealed varying degrees of downregulation for genes such as the stress-related genes SlABCC10 and SlGAME6 and the pathogenesis-related protein P450 gene SlCYP71A1, and upregulation of the pathogenesis-related protein P450 genes SlCYP94B1, SlCYP734A7 and SlCYP94A2 in SlHDT1-RNAi transgenic plants, indicating that SlHDT1 plays an important role in the response to biotic and abiotic stresses by mediating stress-related gene expression. In summary, the data suggest that SlHDT1 plays essential roles in the regulation of inflorescence architecture and fruit yield and in the response to drought and salt stresses.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 5","pages":"101"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-024-01503-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Histone deacetylation, one of most important types of post-translational modification, plays multiple indispensable roles in plant growth and development and abiotic stress responses. However, little information about the roles of histone deacetylase in regulating inflorescence architecture, fruit yield, and stress responses is available in tomato. Functional characterization revealed that SlHDT1 participated in the control of inflorescence architecture and fruit yield by regulating auxin signalling, and influenced tolerance to drought and salt stresses by governing abscisic acid (ABA) signalling. More inflorescence branches and higher fruit yield, which were influenced by auxin signalling, were observed in SlHDT1-RNAi transgenic plants. Moreover, tolerance to drought and salt stresses was decreased in SlHDT1-RNAi transgenic lines compared with the wild type (WT). Changes in parameters related to the stress response, including decreases in survival rate, chlorophyll content, relative water content (RWC), proline content, catalase (CAT) activity and ABA content and an increase in malonaldehyde (MDA) content, were observed in SlHDT1-RNAi transgenic lines. In addition, the RNA-seq analysis revealed varying degrees of downregulation for genes such as the stress-related genes SlABCC10 and SlGAME6 and the pathogenesis-related protein P450 gene SlCYP71A1, and upregulation of the pathogenesis-related protein P450 genes SlCYP94B1, SlCYP734A7 and SlCYP94A2 in SlHDT1-RNAi transgenic plants, indicating that SlHDT1 plays an important role in the response to biotic and abiotic stresses by mediating stress-related gene expression. In summary, the data suggest that SlHDT1 plays essential roles in the regulation of inflorescence architecture and fruit yield and in the response to drought and salt stresses.
期刊介绍:
Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.