High-Throughput Phenotyping of Soybean Biomass: Conventional Trait Estimation and Novel Latent Feature Extraction Using UAV Remote Sensing and Deep Learning Models.
{"title":"High-Throughput Phenotyping of Soybean Biomass: Conventional Trait Estimation and Novel Latent Feature Extraction Using UAV Remote Sensing and Deep Learning Models.","authors":"Mashiro Okada, Clément Barras, Yusuke Toda, Kosuke Hamazaki, Yoshihiro Ohmori, Yuji Yamasaki, Hirokazu Takahashi, Hideki Takanashi, Mai Tsuda, Masami Yokota Hirai, Hisashi Tsujimoto, Akito Kaga, Mikio Nakazono, Toru Fujiwara, Hiroyoshi Iwata","doi":"10.34133/plantphenomics.0244","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput phenotyping serves as a framework to reduce chronological costs and accelerate breeding cycles. In this study, we developed models to estimate the phenotypes of biomass-related traits in soybean (<i>Glycine max</i>) using unmanned aerial vehicle (UAV) remote sensing and deep learning models. In 2018, a field experiment was conducted using 198 soybean germplasm accessions with known whole-genome sequences under 2 irrigation conditions: drought and control. We used a convolutional neural network (CNN) as a model to estimate the phenotypic values of 5 conventional biomass-related traits: dry weight, main stem length, numbers of nodes and branches, and plant height. We utilized manually measured phenotypes of conventional traits along with RGB images and digital surface models from UAV remote sensing to train our CNN models. The accuracy of the developed models was assessed through 10-fold cross-validation, which demonstrated their ability to accurately estimate the phenotypes of all conventional traits simultaneously. Deep learning enabled us to extract features that exhibited strong correlations with the output (i.e., phenotypes of the target traits) and accurately estimate the values of the features from the input data. We considered the extracted low-dimensional features as phenotypes in the latent space and attempted to annotate them based on the phenotypes of conventional traits. Furthermore, we validated whether these low-dimensional latent features were genetically controlled by assessing the accuracy of genomic predictions. The results revealed the potential utility of these low-dimensional latent features in actual breeding scenarios.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382017/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0244","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
High-throughput phenotyping serves as a framework to reduce chronological costs and accelerate breeding cycles. In this study, we developed models to estimate the phenotypes of biomass-related traits in soybean (Glycine max) using unmanned aerial vehicle (UAV) remote sensing and deep learning models. In 2018, a field experiment was conducted using 198 soybean germplasm accessions with known whole-genome sequences under 2 irrigation conditions: drought and control. We used a convolutional neural network (CNN) as a model to estimate the phenotypic values of 5 conventional biomass-related traits: dry weight, main stem length, numbers of nodes and branches, and plant height. We utilized manually measured phenotypes of conventional traits along with RGB images and digital surface models from UAV remote sensing to train our CNN models. The accuracy of the developed models was assessed through 10-fold cross-validation, which demonstrated their ability to accurately estimate the phenotypes of all conventional traits simultaneously. Deep learning enabled us to extract features that exhibited strong correlations with the output (i.e., phenotypes of the target traits) and accurately estimate the values of the features from the input data. We considered the extracted low-dimensional features as phenotypes in the latent space and attempted to annotate them based on the phenotypes of conventional traits. Furthermore, we validated whether these low-dimensional latent features were genetically controlled by assessing the accuracy of genomic predictions. The results revealed the potential utility of these low-dimensional latent features in actual breeding scenarios.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.