Multi-Omic Approaches in Cancer-Related Micropeptide Identification.

IF 4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Proteomes Pub Date : 2024-09-13 DOI:10.3390/proteomes12030026
Katarina Vrbnjak, Raj Nayan Sewduth
{"title":"Multi-Omic Approaches in Cancer-Related Micropeptide Identification.","authors":"Katarina Vrbnjak, Raj Nayan Sewduth","doi":"10.3390/proteomes12030026","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the advances in modern cancer therapy, malignant diseases are still a leading cause of morbidity and mortality worldwide. Conventional treatment methods frequently lead to side effects and drug resistance in patients, highlighting the need for novel therapeutic approaches. Recent findings have identified the existence of non-canonical micropeptides, an additional layer of the proteome complexity, also called the microproteome. These small peptides are a promising class of therapeutic agents with the potential to address the limitations of current cancer treatments. The microproteome is encoded by regions of the genome historically annotated as non-coding, and its existence has been revealed thanks to recent advances in proteomic and bioinformatic technology, which dramatically improved the understanding of proteome complexity. Micropeptides have been shown to be biologically active in several cancer types, indicating their therapeutic role. Furthermore, they are characterized by low toxicity and high target specificity, demonstrating their potential for the development of better tolerated drugs. In this review, we survey the current landscape of known micropeptides with a role in cancer progression or treatment, discuss their potential as anticancer agents, and describe the methodological challenges facing the proteome field of research.</p>","PeriodicalId":20877,"journal":{"name":"Proteomes","volume":"12 3","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417835/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proteomes12030026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the advances in modern cancer therapy, malignant diseases are still a leading cause of morbidity and mortality worldwide. Conventional treatment methods frequently lead to side effects and drug resistance in patients, highlighting the need for novel therapeutic approaches. Recent findings have identified the existence of non-canonical micropeptides, an additional layer of the proteome complexity, also called the microproteome. These small peptides are a promising class of therapeutic agents with the potential to address the limitations of current cancer treatments. The microproteome is encoded by regions of the genome historically annotated as non-coding, and its existence has been revealed thanks to recent advances in proteomic and bioinformatic technology, which dramatically improved the understanding of proteome complexity. Micropeptides have been shown to be biologically active in several cancer types, indicating their therapeutic role. Furthermore, they are characterized by low toxicity and high target specificity, demonstrating their potential for the development of better tolerated drugs. In this review, we survey the current landscape of known micropeptides with a role in cancer progression or treatment, discuss their potential as anticancer agents, and describe the methodological challenges facing the proteome field of research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
癌症相关微肽鉴定中的多肽方法
尽管现代癌症治疗技术不断进步,但恶性肿瘤仍然是全球发病率和死亡率的主要原因。传统的治疗方法经常会导致副作用和患者产生耐药性,这凸显了对新型治疗方法的需求。最近的研究发现了非典型微肽的存在,它们是蛋白质组复杂性的另一层,也被称为微蛋白质组。这些小肽是一类很有前景的治疗药物,有可能解决目前癌症治疗的局限性。微蛋白组由基因组中历来被注释为非编码的区域编码,由于蛋白质组学和生物信息学技术的最新进展,人们对蛋白质组复杂性的认识有了极大的提高,微蛋白组的存在才得以揭示。微肽已被证明在几种癌症类型中具有生物活性,这表明了它们的治疗作用。此外,它们还具有低毒性和高靶向特异性的特点,这表明它们具有开发耐受性更好的药物的潜力。在这篇综述中,我们调查了目前已知的在癌症进展或治疗中发挥作用的微肽的情况,讨论了它们作为抗癌药物的潜力,并描述了蛋白质组研究领域所面临的方法学挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proteomes
Proteomes Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.50
自引率
3.00%
发文量
37
审稿时长
11 weeks
期刊介绍: Proteomes (ISSN 2227-7382) is an open access, peer reviewed journal on all aspects of proteome science. Proteomes covers the multi-disciplinary topics of structural and functional biology, protein chemistry, cell biology, methodology used for protein analysis, including mass spectrometry, protein arrays, bioinformatics, HTS assays, etc. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers. Scope: -whole proteome analysis of any organism -disease/pharmaceutical studies -comparative proteomics -protein-ligand/protein interactions -structure/functional proteomics -gene expression -methodology -bioinformatics -applications of proteomics
期刊最新文献
The Non-Linear Profile of Aging: U-Shaped Expression of Myostatin, Follistatin and Intermediate Signals in a Longitudinal In Vitro Murine Cell Sarcopenia Model. Assessment of Data-Independent Acquisition Mass Spectrometry (DIA-MS) for the Identification of Single Amino Acid Variants. Transcriptomics Revealed Differentially Expressed Transcription Factors and MicroRNAs in Human Diabetic Foot Ulcers. Comparative Proteome-Wide Abundance Profiling of Yeast Strains Deleted for Cdc48 Adaptors. Multiple Reaction Monitoring-Mass Spectrometric Immunoassay Analysis of Parathyroid Hormone Fragments with Vitamin D Deficiency in Patients with Diabetes Mellitus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1