A Comparative Study on Radiosensitivity of Canine Osteosarcoma Cell Lines Subjected to Spatially Fractionated Radiotherapy.

IF 2.5 3区 医学 Q2 BIOLOGY Radiation research Pub Date : 2024-11-01 DOI:10.1667/RADE-24-00168.1
Alizeh Z Khan, Cheyanne M Scholl, Joshua G Henry, Parminder S Basran
{"title":"A Comparative Study on Radiosensitivity of Canine Osteosarcoma Cell Lines Subjected to Spatially Fractionated Radiotherapy.","authors":"Alizeh Z Khan, Cheyanne M Scholl, Joshua G Henry, Parminder S Basran","doi":"10.1667/RADE-24-00168.1","DOIUrl":null,"url":null,"abstract":"<p><p>Canine appendicular osteosarcoma (OSCA) is a highly aggressive cancer, constituting 85% of all bone tumors in dogs, predominantly affecting larger breeds and exhibiting a high metastatic rate. This disease also shares many genomic similarities with human osteosarcomas, making it an ideal comparative model for treatment discovery. In this study, we characterized the radiobiological properties of several OSCA cell lines when subjected to spatially fractionated radiation therapy (SFRT) and chemotherapy. Specifically, we focused on lower (peak) doses from SFRT ranging from 1 to 10 Gy. These canine OSCA cell lines serve as useful models for osteosarcoma research that can be utilized to find translational treatments for both canine and human patients. This study reaffirms established clinical wisdom regarding the notoriously radioresistant profile of osteosarcomas but additionally offers compelling evidence supporting SFRT as a promising treatment option that could be used in conjunction with other cytotoxic agents.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00168.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Canine appendicular osteosarcoma (OSCA) is a highly aggressive cancer, constituting 85% of all bone tumors in dogs, predominantly affecting larger breeds and exhibiting a high metastatic rate. This disease also shares many genomic similarities with human osteosarcomas, making it an ideal comparative model for treatment discovery. In this study, we characterized the radiobiological properties of several OSCA cell lines when subjected to spatially fractionated radiation therapy (SFRT) and chemotherapy. Specifically, we focused on lower (peak) doses from SFRT ranging from 1 to 10 Gy. These canine OSCA cell lines serve as useful models for osteosarcoma research that can be utilized to find translational treatments for both canine and human patients. This study reaffirms established clinical wisdom regarding the notoriously radioresistant profile of osteosarcomas but additionally offers compelling evidence supporting SFRT as a promising treatment option that could be used in conjunction with other cytotoxic agents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
犬骨肉瘤细胞株接受空间分次放疗的放射敏感性比较研究
犬附着性骨肉瘤(OSCA)是一种侵袭性很强的癌症,占犬类所有骨肿瘤的 85%,主要影响较大的犬种,并表现出很高的转移率。这种疾病与人类骨肉瘤在基因组方面也有许多相似之处,因此是发现治疗方法的理想比较模型。在这项研究中,我们研究了几种 OSCA 细胞系在接受空间分割放射治疗(SFRT)和化疗时的放射生物学特性。具体来说,我们重点研究了空间分次放射治疗(SFRT)的较低(峰值)剂量,从1到10 Gy不等。这些犬类 OSCA 细胞系是骨肉瘤研究的有用模型,可用于寻找犬类和人类患者的转化治疗方法。这项研究再次证实了关于骨肉瘤众所周知的抗放射特性的既有临床智慧,而且还提供了令人信服的证据,支持将 SFRT 作为一种有前途的治疗选择,可与其他细胞毒药物联合使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
期刊最新文献
Long-term Radiation Signal Persistence in Urine and Blood: A Two-year Analysis in Non-human Primates Exposed to a 4 Gy Total-Body Gamma-Radiation Dose. Additive Effects of Cu-ATSM and Radiation on Survival of Diffuse Intrinsic Pontine Glioma Cells. Harnessing Senescence for Antitumor Immunity to Advance Cancer Treatment. 56Fe-ion Exposure Increases the Incidence of Lung and Brain Tumors at a Similar Rate in Male and Female Mice. A Comparative Study on Radiosensitivity of Canine Osteosarcoma Cell Lines Subjected to Spatially Fractionated Radiotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1