Disulfiram Upgrades the Radiosensitivity of Osteosarcoma by Enhancing Apoptosis and P53-Induced Cell Cycle Arrest.

IF 2.5 3区 医学 Q2 BIOLOGY Radiation research Pub Date : 2024-11-01 DOI:10.1667/RADE-24-00046.1
Qiujian Lian, Fengmei Chen, Zhilin Sha, Haonan Zhao, Jingyan Li, Tongjiang Chen, Chang Liu, Bingxuan Wang, Zhiwei Wang, Suchi Qiao
{"title":"Disulfiram Upgrades the Radiosensitivity of Osteosarcoma by Enhancing Apoptosis and P53-Induced Cell Cycle Arrest.","authors":"Qiujian Lian, Fengmei Chen, Zhilin Sha, Haonan Zhao, Jingyan Li, Tongjiang Chen, Chang Liu, Bingxuan Wang, Zhiwei Wang, Suchi Qiao","doi":"10.1667/RADE-24-00046.1","DOIUrl":null,"url":null,"abstract":"<p><p>The prognosis of osteosarcoma has not been improved for decades. As radioresistance is one of the major reasons, effective radiotherapy sensitization drugs need to be discovered. HOS and K7M2 osteosarcoma cell lines were treated with disulfiram (DSF) and radiation to assess cell viability, proliferation, migration ability, apoptosis level, ROS and Ca2+ level, and cell cycle in vitro. A HOS-derived subcutaneous tumor mouse model was constructed to evaluate tumor growth after DSF combined with radiation, and the Tunel assay and immunohistochemistry of Ki67 were conducted. Western blot was used to evaluate the protein expression level. The IC50 and working concentration of DSF in osteosarcoma cell lines were ascertained. When combined with radiation, DSF effectively suppressed cell viability, proliferation, and migration, while enhancing apoptosis in osteosarcoma cells. The cell cycle postirradiation exhibited a downward shift in the G1 phase, but the addition of DSF counteracted this trend. The combination of DSF and radiation exhibited inhibitory effects on tumor growth in vivo, which was corroborated by Ki67 staining and Tunel assay. Western blot analysis revealed that DSF upregulated the expression of P53, P21, CDKN2C, BAX, and cleaved Caspase-3 while downregulating BCL2, CDK4/6, and CyclinD1 after irradiation. Our results document that DSF exerts its radiosensitization effects in vivo and in vitro, and is a valuable radiosensitizing drug option for osteosarcoma. The radiosensitization effect is mainly achieved by activating the apoptotic pathway and promoting cell cycle arrest induced by P53/P21 and CDKN2C after irradiation.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"752-764"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00046.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The prognosis of osteosarcoma has not been improved for decades. As radioresistance is one of the major reasons, effective radiotherapy sensitization drugs need to be discovered. HOS and K7M2 osteosarcoma cell lines were treated with disulfiram (DSF) and radiation to assess cell viability, proliferation, migration ability, apoptosis level, ROS and Ca2+ level, and cell cycle in vitro. A HOS-derived subcutaneous tumor mouse model was constructed to evaluate tumor growth after DSF combined with radiation, and the Tunel assay and immunohistochemistry of Ki67 were conducted. Western blot was used to evaluate the protein expression level. The IC50 and working concentration of DSF in osteosarcoma cell lines were ascertained. When combined with radiation, DSF effectively suppressed cell viability, proliferation, and migration, while enhancing apoptosis in osteosarcoma cells. The cell cycle postirradiation exhibited a downward shift in the G1 phase, but the addition of DSF counteracted this trend. The combination of DSF and radiation exhibited inhibitory effects on tumor growth in vivo, which was corroborated by Ki67 staining and Tunel assay. Western blot analysis revealed that DSF upregulated the expression of P53, P21, CDKN2C, BAX, and cleaved Caspase-3 while downregulating BCL2, CDK4/6, and CyclinD1 after irradiation. Our results document that DSF exerts its radiosensitization effects in vivo and in vitro, and is a valuable radiosensitizing drug option for osteosarcoma. The radiosensitization effect is mainly achieved by activating the apoptotic pathway and promoting cell cycle arrest induced by P53/P21 and CDKN2C after irradiation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双硫仑通过增强细胞凋亡和P53诱导的细胞周期停滞提高骨肉瘤的放射敏感性
几十年来,骨肉瘤的预后一直没有改善。放射抗性是主要原因之一,因此需要发现有效的放疗增敏药物。研究人员用双硫仑(DSF)和放射线处理了HOS和K7M2骨肉瘤细胞系,以评估体外细胞活力、增殖、迁移能力、凋亡水平、ROS和Ca2+水平以及细胞周期。构建了HOS衍生皮下肿瘤小鼠模型,以评估DSF与辐射结合后的肿瘤生长情况,并进行了Tunel测定和Ki67免疫组化。采用 Western 印迹法评估蛋白表达水平。确定了DSF在骨肉瘤细胞系中的IC50和工作浓度。当与辐射联合使用时,DSF 能有效抑制骨肉瘤细胞的活力、增殖和迁移,同时增强其凋亡。辐射后的细胞周期在 G1 期出现下移,但 DSF 的加入抵消了这一趋势。DSF 与辐射的结合对体内肿瘤的生长有抑制作用,Ki67 染色和 Tunel 检测证实了这一点。Western印迹分析显示,DSF能上调P53、P21、CDKN2C、BAX和裂解Caspase-3的表达,同时下调BCL2、CDK4/6和CyclinD1的表达。我们的研究结果表明,DSF在体内和体外都能发挥其放射增敏作用,是治疗骨肉瘤的一种有价值的放射增敏药物选择。其放射增敏作用主要是通过激活凋亡通路和促进照射后 P53/P21 和 CDKN2C 诱导的细胞周期停滞来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
期刊最新文献
Effect of Ultrahigh Dose Rate on Biomolecular Radiation Damage. A Million Person Study Innovation: Evaluating Cognitive Impairment and other Morbidity Outcomes from Chronic Radiation Exposure Through Linkages with the Centers for Medicaid and Medicare Services Assessment and Claims Data. Hepatic Stellate Cell-mediated Increase in CCL5 Chemokine Expression after X-ray Irradiation Determined In Vitro and In Vivo. Response of Spontaneous Oral Tumors in Canine Cancer Patients Treated with Stereotactic Body Radiation Therapy (SBRT). Survey of Changes in Absolute Lymphocyte Counts and Peripheral Immune Repertoire Diversity after External Beam Radiotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1