Diagnosing Cataracts in the Digital Age: A Survey on AI, Metaverse, and Digital Twin Applications.

IF 1.9 4区 医学 Q2 OPHTHALMOLOGY Seminars in Ophthalmology Pub Date : 2024-11-01 Epub Date: 2024-09-20 DOI:10.1080/08820538.2024.2403436
Aida Jones, Thulasi Bai Vijayan, Sheila John
{"title":"Diagnosing Cataracts in the Digital Age: A Survey on AI, Metaverse, and Digital Twin Applications.","authors":"Aida Jones, Thulasi Bai Vijayan, Sheila John","doi":"10.1080/08820538.2024.2403436","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The study explores the evolving landscape of cataract diagnosis, focusing on both traditional methods and innovative technological integrations. It aims to address challenges with subjectivity in traditional cataract grading and to evaluate how new technologies can enhance diagnostic accuracy and accessibility.</p><p><strong>Methods: </strong>The research introduces and examines the use of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in automating and improving cataract screening processes. It also explores the role of the Metaverse, Digital Twins, and Teleophthalmology for immersive patient education, real-time virtual replicas of eyes, and remote access to specialized care.</p><p><strong>Results: </strong>Various ML and DL techniques demonstrated significant accuracy in cataract detection. The integration of these technologies, along with the Metaverse, Digital Twins, and Teleophthalmology, provides a comprehensive framework for accurate and accessible cataract diagnosis.</p><p><strong>Conclusion: </strong>There is a notable paradigm shift toward individualized, predictive, and transformative eye care. The advancements in technology address existing diagnostic challenges and mitigate the shortage of ophthalmologists by extending high-quality care to underserved regions. These developments pave the way for improved cataract management and broader accessibility.</p>","PeriodicalId":21702,"journal":{"name":"Seminars in Ophthalmology","volume":" ","pages":"562-569"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08820538.2024.2403436","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The study explores the evolving landscape of cataract diagnosis, focusing on both traditional methods and innovative technological integrations. It aims to address challenges with subjectivity in traditional cataract grading and to evaluate how new technologies can enhance diagnostic accuracy and accessibility.

Methods: The research introduces and examines the use of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in automating and improving cataract screening processes. It also explores the role of the Metaverse, Digital Twins, and Teleophthalmology for immersive patient education, real-time virtual replicas of eyes, and remote access to specialized care.

Results: Various ML and DL techniques demonstrated significant accuracy in cataract detection. The integration of these technologies, along with the Metaverse, Digital Twins, and Teleophthalmology, provides a comprehensive framework for accurate and accessible cataract diagnosis.

Conclusion: There is a notable paradigm shift toward individualized, predictive, and transformative eye care. The advancements in technology address existing diagnostic challenges and mitigate the shortage of ophthalmologists by extending high-quality care to underserved regions. These developments pave the way for improved cataract management and broader accessibility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
诊断数字时代的白内障:人工智能、元宇宙和数字孪生应用调查。
目的:本研究探讨了白内障诊断的演变情况,重点关注传统方法和创新技术的整合。研究旨在解决传统白内障分级中存在的主观性问题,并评估新技术如何提高诊断的准确性和可及性:研究介绍并探讨了人工智能(AI)、机器学习(ML)和深度学习(DL)在自动化和改进白内障筛查过程中的应用。研究还探讨了 Metaverse、Digital Twins 和远程眼科在沉浸式患者教育、实时虚拟眼睛复制品和远程获得专业护理方面的作用:结果:各种 ML 和 DL 技术在白内障检测中表现出显著的准确性。这些技术与 Metaverse、Digital Twins 和远程眼科的整合,为准确、便捷的白内障诊断提供了一个全面的框架:结论:眼科护理正朝着个性化、预测性和变革性的方向发生显著的模式转变。技术的进步解决了现有的诊断难题,并通过将高质量的医疗服务扩展到服务不足的地区,缓解了眼科医生短缺的问题。这些发展为改善白内障管理和扩大可及性铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Seminars in Ophthalmology
Seminars in Ophthalmology OPHTHALMOLOGY-
CiteScore
3.20
自引率
0.00%
发文量
80
审稿时长
>12 weeks
期刊介绍: Seminars in Ophthalmology offers current, clinically oriented reviews on the diagnosis and treatment of ophthalmic disorders. Each issue focuses on a single topic, with a primary emphasis on appropriate surgical techniques.
期刊最新文献
Leveraging Artificial Intelligence for Diabetic Retinopathy Screening and Management: History and Current Advances. Non-Conditional and Conditional Metastasis of Uveal Melanoma Per Millimeter-By-Millimeter in Thickness in 8034 Patients. Susac Syndrome: A Multidisciplinary Approach to Diagnosis and Management with an Emphasis on Ophthalmic Involvement. Tear Film and Dry Eye Characteristics as Predictors of Photophobia in 374 Patients with Dry Eye Disease. Risk Factors for Eye and Orbital Injuries Related to Electric Scooters and Off-Road Vehicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1