Samantha O'Keeffe, Lilly Garcia, Yi Chen, Richard C Law, Chong Liu, Junyoung O Park
{"title":"Bringing carbon to life via one-carbon metabolism.","authors":"Samantha O'Keeffe, Lilly Garcia, Yi Chen, Richard C Law, Chong Liu, Junyoung O Park","doi":"10.1016/j.tibtech.2024.08.014","DOIUrl":null,"url":null,"abstract":"<p><p>One-carbon (C1) compounds found in greenhouse gases and industrial waste streams are underutilized carbon and energy sources. While various biological and chemical means exist for converting C1 substrates into multicarbon products, major challenges of C1 conversion lie in creating net value. Here, we review metabolic strategies to utilize carbon across oxidation states. Complications arise in biochemical C1-utilization approaches because of the need for cellular energy currency ATP. ATP supports cell maintenance and proliferation and drives thermodynamically challenging reactions by coupling them with ATP hydrolysis. Powering metabolism through substrate cofeeding and energy transduction from light and electricity improves ATP availability, relieves metabolic bottlenecks, and upcycles carbon. We present a bioenergetic, engineering, and technoeconomic outlook for bringing elements to life.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.08.014","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
One-carbon (C1) compounds found in greenhouse gases and industrial waste streams are underutilized carbon and energy sources. While various biological and chemical means exist for converting C1 substrates into multicarbon products, major challenges of C1 conversion lie in creating net value. Here, we review metabolic strategies to utilize carbon across oxidation states. Complications arise in biochemical C1-utilization approaches because of the need for cellular energy currency ATP. ATP supports cell maintenance and proliferation and drives thermodynamically challenging reactions by coupling them with ATP hydrolysis. Powering metabolism through substrate cofeeding and energy transduction from light and electricity improves ATP availability, relieves metabolic bottlenecks, and upcycles carbon. We present a bioenergetic, engineering, and technoeconomic outlook for bringing elements to life.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).