Saidu Abdullahi, Hazzeman Haris, Kamarul Zaman Zarkasi, Amir Hamzah Ghazali
{"title":"Alleviation of Cadmium Stress in Rice Seedlings Inoculated with <i>Enterobacter tabaci</i> 4M9 (CCB-MBL 5004).","authors":"Saidu Abdullahi, Hazzeman Haris, Kamarul Zaman Zarkasi, Amir Hamzah Ghazali","doi":"10.21315/tlsr2024.35.1.6","DOIUrl":null,"url":null,"abstract":"<p><p>The growth of crop plants is greatly affected by the increased toxicity of metals. Luckily, certain beneficial bacteria can potentially reduce the effects of metal stress and promote the growth of the host plants. Many species of bacteria were reported as heavy metal tolerant and plant growth promoting, with very little or no report available concerning <i>Enterobacter tabaci</i> as heavy metal tolerant plant growth promoting. The present study aimed to evaluate the potential of Cadmium (Cd) tolerant <i>Enterobacter tabaci</i> 4M9 (CCB-MBL 5004) to alleviate heavy metals stress and enhance the growth of rice seedlings grown under Cd stress conditions. Rice seedlings were grown in Yoshida medium supplemented with different concentrations of Cd and inoculated with 4M9. The results showed that the inoculum tested successfully reduced oxidative stress in the seedlings by reducing the electrolyte leakage (EL) and increasing catalase (CAT) and superoxide dismutase (SOD) activities in the inoculated seedlings compared to the control counterparts. The results also revealed a significant increase in plant growth, biomass, and chlorophyll content of inoculated rice seedlings compared to the control. In general, the Cd tolerant <i>E. tabaci</i> 4M9 confers heavy metal alleviation and thereby improves the growth and survival of rice seedlings under Cd stress conditions. Therefore, the findings stated the potential of 4M9 for alleviating heavy metal stress and promoting the development of inoculated rice seedlings if accidentally grown under Cd-contaminated conditions.</p>","PeriodicalId":23477,"journal":{"name":"Tropical life sciences research","volume":"35 1","pages":"107-121"},"PeriodicalIF":1.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383631/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical life sciences research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21315/tlsr2024.35.1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The growth of crop plants is greatly affected by the increased toxicity of metals. Luckily, certain beneficial bacteria can potentially reduce the effects of metal stress and promote the growth of the host plants. Many species of bacteria were reported as heavy metal tolerant and plant growth promoting, with very little or no report available concerning Enterobacter tabaci as heavy metal tolerant plant growth promoting. The present study aimed to evaluate the potential of Cadmium (Cd) tolerant Enterobacter tabaci 4M9 (CCB-MBL 5004) to alleviate heavy metals stress and enhance the growth of rice seedlings grown under Cd stress conditions. Rice seedlings were grown in Yoshida medium supplemented with different concentrations of Cd and inoculated with 4M9. The results showed that the inoculum tested successfully reduced oxidative stress in the seedlings by reducing the electrolyte leakage (EL) and increasing catalase (CAT) and superoxide dismutase (SOD) activities in the inoculated seedlings compared to the control counterparts. The results also revealed a significant increase in plant growth, biomass, and chlorophyll content of inoculated rice seedlings compared to the control. In general, the Cd tolerant E. tabaci 4M9 confers heavy metal alleviation and thereby improves the growth and survival of rice seedlings under Cd stress conditions. Therefore, the findings stated the potential of 4M9 for alleviating heavy metal stress and promoting the development of inoculated rice seedlings if accidentally grown under Cd-contaminated conditions.
期刊介绍:
Tropical Life Sciences Research (TLSR) formerly known as Journal of Bioscience seeks to publish relevant ideas and knowledge addressing vital life sciences issues in the tropical region. The Journal’s scope is interdisciplinary in nature and covers any aspects related to issues on life sciences especially from the field of biochemistry, microbiology, biotechnology and animal, plant, environmental, biomedical and pharmaceutical sciences. TLSR practices double blind peer review system to ensure and maintain the good quality of articles published in this journal. Two issues are published annually in printed and electronic form. TLSR also accepts review articles, experimental papers and short communications. The Chief Editor would like to invite researchers to use this journal as a mean to rapidly promote their research findings.