Advanced interpretable diagnosis of Alzheimer's disease using SECNN-RF framework with explainable AI.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2024-09-02 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1456069
Nabil M AbdelAziz, Wael Said, Mohamed M AbdelHafeez, Asmaa H Ali
{"title":"Advanced interpretable diagnosis of Alzheimer's disease using SECNN-RF framework with explainable AI.","authors":"Nabil M AbdelAziz, Wael Said, Mohamed M AbdelHafeez, Asmaa H Ali","doi":"10.3389/frai.2024.1456069","DOIUrl":null,"url":null,"abstract":"<p><p>Early detection of Alzheimer's disease (AD) is vital for effective treatment, as interventions are most successful in the disease's early stages. Combining Magnetic Resonance Imaging (MRI) with artificial intelligence (AI) offers significant potential for enhancing AD diagnosis. However, traditional AI models often lack transparency in their decision-making processes. Explainable Artificial Intelligence (XAI) is an evolving field that aims to make AI decisions understandable to humans, providing transparency and insight into AI systems. This research introduces the Squeeze-and-Excitation Convolutional Neural Network with Random Forest (SECNN-RF) framework for early AD detection using MRI scans. The SECNN-RF integrates Squeeze-and-Excitation (SE) blocks into a Convolutional Neural Network (CNN) to focus on crucial features and uses Dropout layers to prevent overfitting. It then employs a Random Forest classifier to accurately categorize the extracted features. The SECNN-RF demonstrates high accuracy (99.89%) and offers an explainable analysis, enhancing the model's interpretability. Further exploration of the SECNN framework involved substituting the Random Forest classifier with other machine learning algorithms like Decision Tree, XGBoost, Support Vector Machine, and Gradient Boosting. While all these classifiers improved model performance, Random Forest achieved the highest accuracy, followed closely by XGBoost, Gradient Boosting, Support Vector Machine, and Decision Tree which achieved lower accuracy.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1456069"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402894/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1456069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Early detection of Alzheimer's disease (AD) is vital for effective treatment, as interventions are most successful in the disease's early stages. Combining Magnetic Resonance Imaging (MRI) with artificial intelligence (AI) offers significant potential for enhancing AD diagnosis. However, traditional AI models often lack transparency in their decision-making processes. Explainable Artificial Intelligence (XAI) is an evolving field that aims to make AI decisions understandable to humans, providing transparency and insight into AI systems. This research introduces the Squeeze-and-Excitation Convolutional Neural Network with Random Forest (SECNN-RF) framework for early AD detection using MRI scans. The SECNN-RF integrates Squeeze-and-Excitation (SE) blocks into a Convolutional Neural Network (CNN) to focus on crucial features and uses Dropout layers to prevent overfitting. It then employs a Random Forest classifier to accurately categorize the extracted features. The SECNN-RF demonstrates high accuracy (99.89%) and offers an explainable analysis, enhancing the model's interpretability. Further exploration of the SECNN framework involved substituting the Random Forest classifier with other machine learning algorithms like Decision Tree, XGBoost, Support Vector Machine, and Gradient Boosting. While all these classifiers improved model performance, Random Forest achieved the highest accuracy, followed closely by XGBoost, Gradient Boosting, Support Vector Machine, and Decision Tree which achieved lower accuracy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可解释人工智能的 SECNN-RF 框架对阿尔茨海默病进行高级可解释诊断。
早期发现阿尔茨海默病(AD)对有效治疗至关重要,因为在疾病的早期阶段采取干预措施最为成功。将磁共振成像(MRI)与人工智能(AI)相结合,为加强阿尔茨海默病诊断提供了巨大的潜力。然而,传统的人工智能模型在决策过程中往往缺乏透明度。可解释人工智能(XAI)是一个不断发展的领域,旨在让人类理解人工智能的决策,提供人工智能系统的透明度和洞察力。这项研究介绍了利用核磁共振扫描进行早期注意力缺失症检测的挤压-激发卷积神经网络与随机森林(SECNN-RF)框架。SECNN-RF将挤压-激发(SE)区块整合到卷积神经网络(CNN)中,以关注关键特征,并使用Dropout层防止过拟合。然后,它采用随机森林分类器对提取的特征进行精确分类。SECNN-RF 的准确率很高(99.89%),并提供了可解释的分析,增强了模型的可解释性。对 SECNN 框架的进一步探索包括用决策树、XGBoost、支持向量机和梯度提升等其他机器学习算法替代随机森林分类器。虽然所有这些分类器都提高了模型性能,但随机森林的准确率最高,XGBoost、梯度提升、支持向量机和决策树紧随其后,准确率较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Advancing smart city factories: enhancing industrial mechanical operations via deep learning techniques. Inpainting of damaged temple murals using edge- and line-guided diffusion patch GAN. Catalyzing IVF outcome prediction: exploring advanced machine learning paradigms for enhanced success rate prognostication. Predicting patient reported outcome measures: a scoping review for the artificial intelligence-guided patient preference predictor. A generative AI-driven interactive listening assessment task.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1