[Molecular Mechanisms Underlying Intracranial Aneurysm Rupture].

Q4 Medicine Neurological Surgery Pub Date : 2024-09-01 DOI:10.11477/mf.1436204999
Tomohiro Aoki, Masahiko Itani
{"title":"[Molecular Mechanisms Underlying Intracranial Aneurysm Rupture].","authors":"Tomohiro Aoki, Masahiko Itani","doi":"10.11477/mf.1436204999","DOIUrl":null,"url":null,"abstract":"<p><p>Intracranial aneurysms, a major cause of subarachnoid hemorrhage(SAH), pose a significant social burden due to their poor patient outcomes. Recent studies, including those using animal models, have shed light on a new disease concept: intracranial aneurysms as a chronic inflammatory disease. This process is triggered by abnormal hemodynamic forces and mediated by immune cells like macrophages and neutrophils. The initiation of intracranial aneurysms is a two-step process. First, high wall shear stress and mechanical stretch work together to promote macrophage infiltration into the arterial walls. This infiltration is facilitated by endothelial cells and fibroblasts, which are activated to produce chemoattractants. Once the lesions enlarge, low wall shear stress and turbulent flow take over, maintaining macrophage infiltration. As the disease progresses towards rupture, infiltration creates hypoxic conditions that exacerbate the situation. These conditions, in turn, induce the formation of neovessels at the weakest point of the aneurysm and promote specific inflammatory microenvironments rich in neutrophils. The excessive tissue destruction caused by neutrophil-mediated inflammation ultimately leads to lesion rupture. Therefore, intracranial aneurysm rupture requires not only structural changes but also qualitative alterations within the chronic inflammatory environment. This suggests that factors mediating chronic inflammation could be potential targets for predicting or preventing aneurysm rupture.</p>","PeriodicalId":35984,"journal":{"name":"Neurological Surgery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11477/mf.1436204999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Intracranial aneurysms, a major cause of subarachnoid hemorrhage(SAH), pose a significant social burden due to their poor patient outcomes. Recent studies, including those using animal models, have shed light on a new disease concept: intracranial aneurysms as a chronic inflammatory disease. This process is triggered by abnormal hemodynamic forces and mediated by immune cells like macrophages and neutrophils. The initiation of intracranial aneurysms is a two-step process. First, high wall shear stress and mechanical stretch work together to promote macrophage infiltration into the arterial walls. This infiltration is facilitated by endothelial cells and fibroblasts, which are activated to produce chemoattractants. Once the lesions enlarge, low wall shear stress and turbulent flow take over, maintaining macrophage infiltration. As the disease progresses towards rupture, infiltration creates hypoxic conditions that exacerbate the situation. These conditions, in turn, induce the formation of neovessels at the weakest point of the aneurysm and promote specific inflammatory microenvironments rich in neutrophils. The excessive tissue destruction caused by neutrophil-mediated inflammation ultimately leads to lesion rupture. Therefore, intracranial aneurysm rupture requires not only structural changes but also qualitative alterations within the chronic inflammatory environment. This suggests that factors mediating chronic inflammation could be potential targets for predicting or preventing aneurysm rupture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[颅内动脉瘤破裂的分子机制]。
颅内动脉瘤是蛛网膜下腔出血(SAH)的主要病因之一,由于患者预后不佳,给社会造成了巨大负担。最近的研究,包括使用动物模型的研究,揭示了一种新的疾病概念:颅内动脉瘤是一种慢性炎症性疾病。这一过程由异常的血流动力学力量引发,并由巨噬细胞和中性粒细胞等免疫细胞介导。颅内动脉瘤的形成有两个步骤。首先,动脉壁的高剪切应力和机械拉伸共同作用,促进巨噬细胞浸润动脉壁。内皮细胞和成纤维细胞被激活,产生趋化物质,从而促进了这种浸润。一旦病变扩大,低壁剪切应力和湍流就会占据主导地位,从而维持巨噬细胞的浸润。随着病变向破裂方向发展,浸润会造成缺氧状况,使情况恶化。这些条件反过来又会诱导动脉瘤最薄弱处新生血管的形成,并促进富含中性粒细胞的特定炎症微环境。中性粒细胞介导的炎症造成的过度组织破坏最终导致病变破裂。因此,颅内动脉瘤破裂不仅需要结构变化,还需要慢性炎症环境的质变。这表明,介导慢性炎症的因素可能是预测或预防动脉瘤破裂的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurological Surgery
Neurological Surgery Medicine-Medicine (all)
自引率
0.00%
发文量
99
期刊最新文献
[Advanced Setup and Techniques for Endovascular Treatment of Ruptured Intracranial Aneurysms]. [Association Between Intracranial Aneurysms and Genes]. [Association of Gut and Oral Microbiota with Cerebral Aneurysms]. [Basic Setup and Coil Embolization Technique for Ruptured Cerebral Aneurysms]. [Clipping via the Transsylvian Approach:From Basic to Advanced Surgical Techniques].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1