{"title":"[Spreading Depolarization After Aneurysmal Subarachnoid Hemorrhage].","authors":"Fumiaki Oka, Hideyuki Ishihara","doi":"10.11477/mf.1436204997","DOIUrl":null,"url":null,"abstract":"<p><p>Aneurysmal subarachnoid hemorrhage(aSAH) is a critical condition that often results in severe neurological deficits. Recent studies have highlighted the role of spreading depolarization(SD) in post-aSAH secondary brain injury. SD comprises rapid and sequential changes in neuronal and glial membrane potentials that disrupt energy metabolism and induce neuronal dysfunction. Implicated in both early brain injury(EBI) and delayed cerebral ischemia(DCI), SD worsens clinical outcomes. This review explores the SD-associated mechanisms in aSAH, ascertains the contribution of SD to EBI and DCI, and identifies potential SD-targeted therapeutic strategies to improve the prognosis of aSAH.</p>","PeriodicalId":35984,"journal":{"name":"Neurological Surgery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11477/mf.1436204997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Aneurysmal subarachnoid hemorrhage(aSAH) is a critical condition that often results in severe neurological deficits. Recent studies have highlighted the role of spreading depolarization(SD) in post-aSAH secondary brain injury. SD comprises rapid and sequential changes in neuronal and glial membrane potentials that disrupt energy metabolism and induce neuronal dysfunction. Implicated in both early brain injury(EBI) and delayed cerebral ischemia(DCI), SD worsens clinical outcomes. This review explores the SD-associated mechanisms in aSAH, ascertains the contribution of SD to EBI and DCI, and identifies potential SD-targeted therapeutic strategies to improve the prognosis of aSAH.