Breast cancer recognition by electrical impedance tomography implemented with Gaussian relaxation-time distribution (EIT-GRTD).

Q3 Biochemistry, Genetics and Molecular Biology Journal of Electrical Bioimpedance Pub Date : 2024-08-12 eCollection Date: 2024-01-01 DOI:10.2478/joeb-2024-0011
Galih Setyawan, Prima Asmara Sejati, Kiagus Aufa Ibrahim, Masahiro Takei
{"title":"Breast cancer recognition by electrical impedance tomography implemented with Gaussian relaxation-time distribution (EIT-GRTD).","authors":"Galih Setyawan, Prima Asmara Sejati, Kiagus Aufa Ibrahim, Masahiro Takei","doi":"10.2478/joeb-2024-0011","DOIUrl":null,"url":null,"abstract":"<p><p>The comparison between breast cancer recognition by electrical impedance tomography implemented with Gaussian relaxation time distribution (EIT-GRTD) and conventional EIT has been conducted to evaluate the optimal frequency for cancer detection <i>f</i> <sup>cancer</sup>. The EIT-GRTD has two steps, which are 1) the determination of the <i>f</i> <sup>cancer</sup> and 2) the refinement of breast reconstruction through time-constant enhancement. This paper employs two-dimensional numerical simulations by a finite element method (FEM) software to replicate the process of breast cancer recognition. The simulation is constructed based on two distinct electrical properties, which are conductivity <i>σ</i> and permitivitty <i>ε</i>, inherent to two major breast tissues: adipose tissues, and breast cancer tissues. In this case, the <i>σ</i> and <i>ε</i> of breast cancer <i>σ</i> <sup>cancer</sup>, <i>ε</i> <sup>cancer</sup> are higher than adipose tissues <i>σ</i> <sup>adipose</sup>, <i>ε</i> <sup>adipose</sup>. The simulation results indicate that the most effective frequency for breast cancer detection based on EIT-GRTD is <i>f</i> <sup>cancer</sup> = 56,234 Hz. Meanwhile, conventional EIT requires more processing to determine the <i>f</i> <sup>cancer</sup> based on image results or spatial conductivity analysis. Quantitatively, both EIT-GRTD and conventional EIT can clearly show the position of the cancer in layers 1 and 2 for EIT-GRTD and only layer 1 for conventional EIT.</p>","PeriodicalId":38125,"journal":{"name":"Journal of Electrical Bioimpedance","volume":"15 1","pages":"99-106"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387985/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Bioimpedance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/joeb-2024-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The comparison between breast cancer recognition by electrical impedance tomography implemented with Gaussian relaxation time distribution (EIT-GRTD) and conventional EIT has been conducted to evaluate the optimal frequency for cancer detection f cancer. The EIT-GRTD has two steps, which are 1) the determination of the f cancer and 2) the refinement of breast reconstruction through time-constant enhancement. This paper employs two-dimensional numerical simulations by a finite element method (FEM) software to replicate the process of breast cancer recognition. The simulation is constructed based on two distinct electrical properties, which are conductivity σ and permitivitty ε, inherent to two major breast tissues: adipose tissues, and breast cancer tissues. In this case, the σ and ε of breast cancer σ cancer, ε cancer are higher than adipose tissues σ adipose, ε adipose. The simulation results indicate that the most effective frequency for breast cancer detection based on EIT-GRTD is f cancer = 56,234 Hz. Meanwhile, conventional EIT requires more processing to determine the f cancer based on image results or spatial conductivity analysis. Quantitatively, both EIT-GRTD and conventional EIT can clearly show the position of the cancer in layers 1 and 2 for EIT-GRTD and only layer 1 for conventional EIT.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高斯弛豫时间分布电阻抗断层扫描(EIT-GRTD)识别乳腺癌。
采用高斯弛豫时间分布的电阻抗断层扫描(EIT-GRTD)与传统 EIT 对乳腺癌的识别进行了比较,以评估检测 f 癌症的最佳频率。EIT-GRTD 有两个步骤:1)确定 f 癌症;2)通过时间常数增强完善乳房重建。本文采用有限元法(FEM)软件进行二维数值模拟,以复制乳腺癌识别过程。模拟是基于两种不同的电特性构建的,即电导率σ和允许电导率ε,这两种特性是两种主要乳腺组织(脂肪组织和乳腺癌组织)所固有的。在这种情况下,乳腺癌 σ cancer、ε cancer 的 σ 和 ε 要高于脂肪组织 σ adipose、ε adipose。模拟结果表明,基于 EIT-GRTD 的乳腺癌检测最有效频率为 f cancer = 56,234 Hz。与此同时,传统的 EIT 需要更多的处理才能根据图像结果或空间传导分析确定 f cancer。从数量上看,EIT-GRTD 和传统 EIT 都能清楚地显示癌症在 EIT-GRTD 第 1 层和第 2 层的位置,而传统 EIT 只能显示第 1 层的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electrical Bioimpedance
Journal of Electrical Bioimpedance Engineering-Biomedical Engineering
CiteScore
3.00
自引率
0.00%
发文量
8
审稿时长
17 weeks
期刊最新文献
Effects of acute essential amino acid intake on post-prandial raw bioimpedance and fluid shifts between healthy young and older adults: An exploratory pilot study. Cell membrane capacitance relationship to reference-measured body composition parameters in young adult athletes. Electrical impedance myography as a marker of muscle mass in rats with simulated Anorexia Nervosa. Assessing the consistency between the anthropometric method and bioelectrical impedance analysis when calculating the Heath-Carter somatotype in people without obesity: a cross-sectional study. Predictive classification and regression models for bioimpedance vector analysis: Insights from a southern Cuban cohort.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1