Transformative applications of additive manufacturing in biomedical engineering: bioprinting to surgical innovations.

Senthil Maharaj Kennedy, Amudhan K, Jerold John Britto J, Ezhilmaran V, Jeen Robert Rb
{"title":"Transformative applications of additive manufacturing in biomedical engineering: bioprinting to surgical innovations.","authors":"Senthil Maharaj Kennedy, Amudhan K, Jerold John Britto J, Ezhilmaran V, Jeen Robert Rb","doi":"10.1080/03091902.2024.2399017","DOIUrl":null,"url":null,"abstract":"<p><p>This paper delves into the diverse applications and transformative impact of additive manufacturing (AM) in biomedical engineering. A detailed analysis of various AM technologies showcases their distinct capabilities and specific applications within the medical field. Special emphasis is placed on bioprinting of organs and tissues, a revolutionary area where AM has the potential to revolutionize organ transplantation and regenerative medicine by fabricating functional tissues and organs. The review further explores the customization of implants and prosthetics, demonstrating how tailored medical devices enhance patient comfort and performance. Additionally, the utility of AM in surgical planning is examined, highlighting how printed models contribute to increased surgical precision, reduced operating times, and minimized complications. The discussion extends to the 3D printing of surgical instruments, showcasing how these bespoke tools can improve surgical outcomes. Moreover, the integration of AM in drug delivery systems, including the development of innovative drug-loaded implants, underscores its potential to enhance therapeutic efficacy and reduce side effects. It also addresses personalized prosthetic implants, regulatory frameworks, biocompatibility concerns, and the future potential of AM in global health and sustainable practices.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2024.2399017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper delves into the diverse applications and transformative impact of additive manufacturing (AM) in biomedical engineering. A detailed analysis of various AM technologies showcases their distinct capabilities and specific applications within the medical field. Special emphasis is placed on bioprinting of organs and tissues, a revolutionary area where AM has the potential to revolutionize organ transplantation and regenerative medicine by fabricating functional tissues and organs. The review further explores the customization of implants and prosthetics, demonstrating how tailored medical devices enhance patient comfort and performance. Additionally, the utility of AM in surgical planning is examined, highlighting how printed models contribute to increased surgical precision, reduced operating times, and minimized complications. The discussion extends to the 3D printing of surgical instruments, showcasing how these bespoke tools can improve surgical outcomes. Moreover, the integration of AM in drug delivery systems, including the development of innovative drug-loaded implants, underscores its potential to enhance therapeutic efficacy and reduce side effects. It also addresses personalized prosthetic implants, regulatory frameworks, biocompatibility concerns, and the future potential of AM in global health and sustainable practices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增材制造在生物医学工程中的变革性应用:从生物打印到手术创新。
本文深入探讨了增材制造(AM)在生物医学工程中的各种应用和变革性影响。对各种 AM 技术的详细分析展示了它们在医疗领域的独特能力和具体应用。其中特别强调了器官和组织的生物打印,这是一个革命性的领域,AM 有可能通过制造功能性组织和器官,彻底改变器官移植和再生医学。综述进一步探讨了植入物和假肢的定制,展示了定制医疗设备如何提高病人的舒适度和性能。此外,还探讨了 AM 在手术规划中的实用性,强调了打印模型如何有助于提高手术精度、缩短手术时间和减少并发症。讨论延伸到手术器械的 3D 打印,展示了这些定制工具如何改善手术效果。此外,AM 与给药系统的整合,包括创新药物植入物的开发,都凸显了其提高疗效和减少副作用的潜力。报告还探讨了个性化假体植入、监管框架、生物兼容性问题,以及 AM 在全球健康和可持续发展实践中的未来潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
期刊最新文献
An enhanced Garter Snake Optimization-assisted deep learning model for lung cancer segmentation and classification using CT images. Transformative applications of additive manufacturing in biomedical engineering: bioprinting to surgical innovations. Characterisation of pulmonary air leak measurements using a mechanical ventilator in a bench setup. A novel AES-DES with improved Cheetah optimisation algorithm for secured medical data transmission in cloud environment. Effects of combining rehabilitation training on the recovery of athletic ability after reconstruction of injured ligament.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1