Role of Noncoding RNAs in Modulating Microglial Phenotype.

IF 1.2 Q4 GENETICS & HEREDITY Global Medical Genetics Pub Date : 2024-09-09 eCollection Date: 2024-12-01 DOI:10.1055/s-0044-1790283
Eiman Meer
{"title":"Role of Noncoding RNAs in Modulating Microglial Phenotype.","authors":"Eiman Meer","doi":"10.1055/s-0044-1790283","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia are immunocompetent cells that are present in the retina and central nervous system, and are involved in the development maintenance and immune functions in these systems. Developing from yolk sac-primitive macrophages, they proliferate in the local tissues during the embryonic period without resorting to the production from the hematopoietic stem cells, and are critical in sustaining homeostasis and performing in disease and injury; they have morphological characteristics and distinct phenotypes according to the microenvironment. Microglia are also present in close association with resident cells in the retina where they engage in synapse formation, support normal functions, as well as immune defense. They are involved in the development of numerous neurodegenerative and ophthalmic diseases and act as diversity shields and triggers. Noncoding ribonucleic acids (ncRNAs) refer to RNA molecules synthesized from the mammalian genome, and these do not have protein-coding capacity. These ncRNAs play a role in the regulation of gene expression patterns. ncRNAs have only been recently identified as vastly significant molecules that are involved in the posttranscriptional regulation. Microglia are crucial for brain health and functions and current studies have focused on the effects caused by ncRNA on microglial types. Thus, the aim of the review was to provide an overview of the current knowledge about the regulation of microglial phenotypes by ncRNAs.</p>","PeriodicalId":40142,"journal":{"name":"Global Medical Genetics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383642/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Medical Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0044-1790283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Microglia are immunocompetent cells that are present in the retina and central nervous system, and are involved in the development maintenance and immune functions in these systems. Developing from yolk sac-primitive macrophages, they proliferate in the local tissues during the embryonic period without resorting to the production from the hematopoietic stem cells, and are critical in sustaining homeostasis and performing in disease and injury; they have morphological characteristics and distinct phenotypes according to the microenvironment. Microglia are also present in close association with resident cells in the retina where they engage in synapse formation, support normal functions, as well as immune defense. They are involved in the development of numerous neurodegenerative and ophthalmic diseases and act as diversity shields and triggers. Noncoding ribonucleic acids (ncRNAs) refer to RNA molecules synthesized from the mammalian genome, and these do not have protein-coding capacity. These ncRNAs play a role in the regulation of gene expression patterns. ncRNAs have only been recently identified as vastly significant molecules that are involved in the posttranscriptional regulation. Microglia are crucial for brain health and functions and current studies have focused on the effects caused by ncRNA on microglial types. Thus, the aim of the review was to provide an overview of the current knowledge about the regulation of microglial phenotypes by ncRNAs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非编码 RNA 在调节小胶质细胞表型中的作用
小胶质细胞是存在于视网膜和中枢神经系统中的免疫功能细胞,参与这些系统的发育维护和免疫功能。它们由卵黄囊原始巨噬细胞发育而来,在胚胎时期就在局部组织中增殖,无需借助造血干细胞的产生,在维持体内平衡以及在疾病和损伤时发挥关键作用;根据微环境的不同,它们具有不同的形态特征和表型。小胶质细胞还与视网膜中的驻留细胞密切相关,参与突触形成、支持正常功能以及免疫防御。它们参与了许多神经退行性疾病和眼科疾病的发展,并充当了多样性屏蔽和触发器的角色。非编码核糖核酸(ncRNA)是指由哺乳动物基因组合成的 RNA 分子,它们不具有编码蛋白质的能力。这些 ncRNA 在基因表达模式的调控中发挥作用。ncRNA 最近才被发现是参与转录后调控的重要分子。小胶质细胞对大脑的健康和功能至关重要,目前的研究主要集中于 ncRNA 对小胶质细胞类型的影响。因此,本综述旨在概述目前有关 ncRNA 对小胶质细胞表型调控的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Medical Genetics
Global Medical Genetics GENETICS & HEREDITY-
自引率
11.80%
发文量
30
审稿时长
14 weeks
期刊最新文献
Role of Noncoding RNAs in Modulating Microglial Phenotype. Phenotypic Heterogeneity in ORAI-1-Associated Congenital Myopathy. Human Viral Oncoproteins and Ubiquitin-Proteasome System. Potential Mechanism and Perspectives of Mesenchymal Stem Cell Therapy for Ischemic Stroke: A Review. Genetically Predicted Iron Status Is a Causal Risk of Rheumatoid Arthritis: A Mendelian Randomization Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1