Earthworm (Oligochaeta, Lumbricidae) intraspecific genetic variation and polyploidy.

IF 0.9 Q3 AGRICULTURE, MULTIDISCIPLINARY Vavilovskii Zhurnal Genetiki i Selektsii Pub Date : 2024-09-01 DOI:10.18699/vjgb-24-62
S V Shekhovtsov, Ye A Derzhinsky, E V Golovanova
{"title":"Earthworm (Oligochaeta, Lumbricidae) intraspecific genetic variation and polyploidy.","authors":"S V Shekhovtsov, Ye A Derzhinsky, E V Golovanova","doi":"10.18699/vjgb-24-62","DOIUrl":null,"url":null,"abstract":"<p><p>Earthworms are known for their intricate systematics and a diverse range of reproduction modes, including outcrossing, self-fertilization, parthenogenesis, and some other modes, which can occasionally coexist in a single species. Moreover, they exhibit considerable intraspecific karyotype diversity, with ploidy levels varying from di- to decaploid, as well as high genetic variation. In some cases, a single species may exhibit significant morphological variation, contain several races of different ploidy, and harbor multiple genetic lineages that display significant divergence in both nuclear and mitochondrial DNA. However, the relationship between ploidy races and genetic lineages in earthworms remains largely unexplored. To address this question, we conducted a comprehensive review of available data on earthworm genetic diversity and karyotypes. Our analysis revealed that in many cases, a single genetic lineage appears to encompass populations with different ploidy levels, indicating recent polyploidization. On the other hand, some other cases like Octolasion tyrtaeum and Dendrobaena schmidti/D. tellermanica demonstrate pronounced genetic boundaries between ploidy races, implying that they diverged long ago. Certain cases like the Eisenia nordenskioldi complex represent a complex picture with ancient divergence between lineages and both ancient and recent polyploidization. The comparison of phylogenetic and cytological data suggests that some ploidy races have arisen independently multiple times, which supports the early findings by T.S. Vsevolodova-Perel and T.V. Malinina. The key to such a complex picture is probably the plasticity of reproductive modes in earthworms, which encompass diverse modes of sexual and asexual reproduction; also, it has been demonstrated that even high-ploidy forms can retain amphimixis.</p>","PeriodicalId":44339,"journal":{"name":"Vavilovskii Zhurnal Genetiki i Selektsii","volume":"28 5","pages":"563-570"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vavilovskii Zhurnal Genetiki i Selektsii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18699/vjgb-24-62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Earthworms are known for their intricate systematics and a diverse range of reproduction modes, including outcrossing, self-fertilization, parthenogenesis, and some other modes, which can occasionally coexist in a single species. Moreover, they exhibit considerable intraspecific karyotype diversity, with ploidy levels varying from di- to decaploid, as well as high genetic variation. In some cases, a single species may exhibit significant morphological variation, contain several races of different ploidy, and harbor multiple genetic lineages that display significant divergence in both nuclear and mitochondrial DNA. However, the relationship between ploidy races and genetic lineages in earthworms remains largely unexplored. To address this question, we conducted a comprehensive review of available data on earthworm genetic diversity and karyotypes. Our analysis revealed that in many cases, a single genetic lineage appears to encompass populations with different ploidy levels, indicating recent polyploidization. On the other hand, some other cases like Octolasion tyrtaeum and Dendrobaena schmidti/D. tellermanica demonstrate pronounced genetic boundaries between ploidy races, implying that they diverged long ago. Certain cases like the Eisenia nordenskioldi complex represent a complex picture with ancient divergence between lineages and both ancient and recent polyploidization. The comparison of phylogenetic and cytological data suggests that some ploidy races have arisen independently multiple times, which supports the early findings by T.S. Vsevolodova-Perel and T.V. Malinina. The key to such a complex picture is probably the plasticity of reproductive modes in earthworms, which encompass diverse modes of sexual and asexual reproduction; also, it has been demonstrated that even high-ploidy forms can retain amphimixis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蚯蚓(寡毛目,Lumbricidae)种内遗传变异和多倍体。
蚯蚓以其错综复杂的系统学和多种多样的繁殖模式而著称,包括外交、自交、孤雌生殖和一些其他模式,这些繁殖模式偶尔会在一个物种中共存。此外,它们还表现出相当大的种内核型多样性,倍性水平从二倍体到十倍体不等,遗传变异也很高。在某些情况下,单个物种可能会表现出显著的形态差异,包含多个倍性不同的种族,并蕴藏着多个遗传系,这些遗传系在核DNA和线粒体DNA方面都表现出显著的差异。然而,蚯蚓倍性种族与遗传系之间的关系在很大程度上仍未得到探讨。为了解决这个问题,我们对现有的蚯蚓遗传多样性和核型数据进行了全面回顾。我们的分析表明,在许多情况下,一个单一的遗传系似乎包含了不同倍性水平的种群,这表明最近出现了多倍体化。另一方面,在其他一些情况下,如 Octolasion tyrtaeum 和 Dendrobaena schmidti/D. tellermanica,倍性种族之间存在明显的遗传界限,这意味着它们在很久以前就已经分化了。某些情况(如 Eisenia nordenskioldi 复合体)则代表了一种复杂的情况,即不同品系之间存在古老的分化,同时存在古老和新近的多倍体化。系统发生学和细胞学数据的比较表明,一些倍性种族是多次独立出现的,这支持了 T.S. Vsevolodova-Perel 和 T.V. Malinina 的早期发现。造成这种复杂局面的关键可能是蚯蚓繁殖模式的可塑性,其中包括有性和无性繁殖的多种模式;此外,研究还表明,即使是高倍率形式也能保持两亲性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Vavilovskii Zhurnal Genetiki i Selektsii
Vavilovskii Zhurnal Genetiki i Selektsii AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
0.00%
发文量
119
审稿时长
8 weeks
期刊介绍: The "Vavilov Journal of genetics and breeding" publishes original research and review articles in all key areas of modern plant, animal and human genetics, genomics, bioinformatics and biotechnology. One of the main objectives of the journal is integration of theoretical and applied research in the field of genetics. Special attention is paid to the most topical areas in modern genetics dealing with global concerns such as food security and human health.
期刊最新文献
Comparative analysis of the primary structure and production of recombinant poly(ADP-ribose)polymerase 1 of long-lived Heterocephalus glaber. Cytogenetic features of intergeneric amphydiploids and genome-substituted forms of wheat. Detailed cytogenetic analysis of three duck species (the northern pintail, mallard, and common goldeneye) and karyotype evolution in the family Anatidae (Anseriformes, Aves). Generation and characterization of two induced pluripotent stem cell lines (ICGi052-A and ICGi052-B) from a patient with frontotemporal dementia with parkinsonism-17 associated with the pathological variant c.2013T>G in the MAPT gene. Molecular genetic and morphological characteristics of Micractinium thermotolerans and M. inermum (Trebouxiophyceae, Chlorophyta) from pyroclastic deposits of the Kamchatka Peninsula (Russia).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1