Comorbidity progression analysis: patient stratification and comorbidity prediction using temporal comorbidity network.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-09-12 eCollection Date: 2024-12-01 DOI:10.1007/s13755-024-00307-5
Ye Liang, Chonghui Guo, Hailin Li
{"title":"Comorbidity progression analysis: patient stratification and comorbidity prediction using temporal comorbidity network.","authors":"Ye Liang, Chonghui Guo, Hailin Li","doi":"10.1007/s13755-024-00307-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The study aims to identify distinct population-specific comorbidity progression patterns, timely detect potential comorbidities, and gain better understanding of the progression of comorbid conditions among patients.</p><p><strong>Methods: </strong>This work presents a comorbidity progression analysis framework that utilizes temporal comorbidity networks (TCN) for patient stratification and comorbidity prediction. We propose a TCN construction approach that utilizes longitudinal, temporal diagnosis data of patients to construct their TCN. Subsequently, we employ the TCN for patient stratification by conducting preliminary analysis, and typical prescription analysis to uncover potential comorbidity progression patterns in different patient groups. Finally, we propose an innovative comorbidity prediction method by utilizing the distance-matched temporal comorbidity network (TCN-DM). This method identifies similar patients with disease prevalence and disease transition patterns and combines their diagnosis information with that of the current patient to predict potential comorbidity at the patient's next visit.</p><p><strong>Results: </strong>This study validated the capability of the framework using a real-world dataset MIMIC-III, with heart failure (HF) as interested disease to investigate comorbidity progression in HF patients. With TCN, this study can identify four significant distinctive HF subgroups, revealing the progression of comorbidities in patients. Furthermore, compared to other methods, TCN-DM demonstrated better predictive performance with F1-Score values ranging from 0.454 to 0.612, showcasing its superiority.</p><p><strong>Conclusions: </strong>This study can identify comorbidity patterns for individuals and population, and offer promising prediction for future comorbidity developments in patients.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393239/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-024-00307-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The study aims to identify distinct population-specific comorbidity progression patterns, timely detect potential comorbidities, and gain better understanding of the progression of comorbid conditions among patients.

Methods: This work presents a comorbidity progression analysis framework that utilizes temporal comorbidity networks (TCN) for patient stratification and comorbidity prediction. We propose a TCN construction approach that utilizes longitudinal, temporal diagnosis data of patients to construct their TCN. Subsequently, we employ the TCN for patient stratification by conducting preliminary analysis, and typical prescription analysis to uncover potential comorbidity progression patterns in different patient groups. Finally, we propose an innovative comorbidity prediction method by utilizing the distance-matched temporal comorbidity network (TCN-DM). This method identifies similar patients with disease prevalence and disease transition patterns and combines their diagnosis information with that of the current patient to predict potential comorbidity at the patient's next visit.

Results: This study validated the capability of the framework using a real-world dataset MIMIC-III, with heart failure (HF) as interested disease to investigate comorbidity progression in HF patients. With TCN, this study can identify four significant distinctive HF subgroups, revealing the progression of comorbidities in patients. Furthermore, compared to other methods, TCN-DM demonstrated better predictive performance with F1-Score values ranging from 0.454 to 0.612, showcasing its superiority.

Conclusions: This study can identify comorbidity patterns for individuals and population, and offer promising prediction for future comorbidity developments in patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合并症进展分析:利用时间合并症网络对患者进行分层和合并症预测。
研究目的本研究旨在识别特定人群的独特合并症进展模式,及时发现潜在合并症,并更好地了解患者合并症的进展情况:本研究提出了一种合并症进展分析框架,该框架利用时间合并症网络(TCN)对患者进行分层和合并症预测。我们提出了一种 TCN 构建方法,利用患者的纵向时间诊断数据来构建他们的 TCN。随后,我们通过进行初步分析和典型处方分析,利用 TCN 对患者进行分层,从而发现不同患者群体中潜在的合并症进展模式。最后,我们利用距离匹配时间合并症网络(TCN-DM)提出了一种创新的合并症预测方法。该方法可识别具有疾病流行和疾病转变模式的类似患者,并将其诊断信息与当前患者的诊断信息相结合,以预测患者下次就诊时的潜在合并症:本研究利用真实世界数据集 MIMIC-III,以心力衰竭(HF)为相关疾病,对该框架的能力进行了验证,以调查 HF 患者的合并症进展情况。通过 TCN,本研究可以识别出四个明显的 HF 亚组,揭示出患者合并症的进展情况。此外,与其他方法相比,TCN-DM 的预测性能更好,F1-Score 值从 0.454 到 0.612 不等,显示了其优越性:本研究可识别个人和人群的合并症模式,并为预测患者未来的合并症发展提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. Wilms' tumor 1 -targeting cancer vaccine: Recent advancements and future perspectives. Toll-like receptor agonists as cancer vaccine adjuvants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1