New therapy for metabolic syndrome: Gut microbiome supplementation.

IF 4.2 3区 医学 Q1 ENDOCRINOLOGY & METABOLISM World Journal of Diabetes Pub Date : 2024-09-15 DOI:10.4239/wjd.v15.i9.1833
Waseem Qureshi, Maqsood Ahmad Dar, Mohd Younis Rather
{"title":"New therapy for metabolic syndrome: Gut microbiome supplementation.","authors":"Waseem Qureshi, Maqsood Ahmad Dar, Mohd Younis Rather","doi":"10.4239/wjd.v15.i9.1833","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiota is important in the development and progression of metabolic illnesses such type 2 diabetes, cardiovascular disease (CVD), and obesity. This diverse community of microorganisms controls a variety of physiological functions, including metabolism, inflammation, and immune response. Understanding these interactions has resulted in novel therapeutic options, including microbiome supplementation. The gut microbiome is extremely susceptible to dietary changes, which can alter its makeup and function, influencing metabolite synthesis that affects host health. Certain metabolites, such as butyrate and propionate, have been proven to protect against metabolic illnesses, whereas trimethylamine has been linked to CVD. Prebiotics, probiotics, synbiotics, and postbiotics are being investigated by researchers as ways to change the gut microbiome and boost metabolic health. Despite advances in therapy and lifestyle adjustments, the prevalence of metabolic syndrome is increasing, emphasizing the need for new medicines.</p>","PeriodicalId":48607,"journal":{"name":"World Journal of Diabetes","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372646/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4239/wjd.v15.i9.1833","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The gut microbiota is important in the development and progression of metabolic illnesses such type 2 diabetes, cardiovascular disease (CVD), and obesity. This diverse community of microorganisms controls a variety of physiological functions, including metabolism, inflammation, and immune response. Understanding these interactions has resulted in novel therapeutic options, including microbiome supplementation. The gut microbiome is extremely susceptible to dietary changes, which can alter its makeup and function, influencing metabolite synthesis that affects host health. Certain metabolites, such as butyrate and propionate, have been proven to protect against metabolic illnesses, whereas trimethylamine has been linked to CVD. Prebiotics, probiotics, synbiotics, and postbiotics are being investigated by researchers as ways to change the gut microbiome and boost metabolic health. Despite advances in therapy and lifestyle adjustments, the prevalence of metabolic syndrome is increasing, emphasizing the need for new medicines.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
代谢综合征的新疗法:补充肠道微生物群
肠道微生物群对 2 型糖尿病、心血管疾病(CVD)和肥胖症等代谢性疾病的发生和发展具有重要影响。这个多样化的微生物群落控制着各种生理功能,包括新陈代谢、炎症和免疫反应。对这些相互作用的了解催生了新的治疗方案,包括补充微生物组。肠道微生物组极易受到饮食变化的影响,饮食变化会改变微生物组的构成和功能,影响代谢物的合成,从而影响宿主的健康。某些代谢物,如丁酸盐和丙酸盐,已被证明可预防代谢性疾病,而三甲胺则与心血管疾病有关。研究人员正在研究益生菌、益生菌、合成益生菌和后益生菌等改变肠道微生物组和促进代谢健康的方法。尽管在治疗和生活方式调整方面取得了进展,但代谢综合征的发病率仍在不断上升,这凸显了对新药的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
World Journal of Diabetes
World Journal of Diabetes ENDOCRINOLOGY & METABOLISM-
自引率
2.40%
发文量
909
期刊介绍: The WJD is a high-quality, peer reviewed, open-access journal. The primary task of WJD is to rapidly publish high-quality original articles, reviews, editorials, and case reports in the field of diabetes. In order to promote productive academic communication, the peer review process for the WJD is transparent; to this end, all published manuscripts are accompanied by the anonymized reviewers’ comments as well as the authors’ responses. The primary aims of the WJD are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in diabetes. Scope: Diabetes Complications, Experimental Diabetes Mellitus, Type 1 Diabetes Mellitus, Type 2 Diabetes Mellitus, Diabetes, Gestational, Diabetic Angiopathies, Diabetic Cardiomyopathies, Diabetic Coma, Diabetic Ketoacidosis, Diabetic Nephropathies, Diabetic Neuropathies, Donohue Syndrome, Fetal Macrosomia, and Prediabetic State.
期刊最新文献
Bone marrow-derived mesenchymal stem cell-derived exosome-loaded miR-129-5p targets high-mobility group box 1 attenuates neurological-impairment after diabetic cerebral hemorrhage. cNPAS2 induced β cell dysfunction by regulating KANK1 expression in type 2 diabetes. Corilagin alleviates podocyte injury in diabetic nephropathy by regulating autophagy via the SIRT1-AMPK pathway. Dexmedetomidine ameliorates diabetic intestinal injury by promoting the polarization of M2 macrophages through the MMP23B pathway. Exploring the genetic basis of childhood monogenic diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1