{"title":"Artificial intelligence-enhanced electrocardiogram for the diagnosis of cardiac amyloidosis: A systemic review and meta-analysis","authors":"Laibah Arshad Khan MBBS , Fahad Hassan Shaikh MBBS , Muhammad Sami Khan MBBS , Bayan Zafar MBBS , Maheera Farooqi MBBS , Bayarbaatar Bold MD , Hafiza Madiha Aslam MBBS , Nabeeha Essam MBBS , Isma Noor MBBS , Amber Siddique MBBS , Saad Shakil MBBS , Mahnoor Asghar Keen MBBS","doi":"10.1016/j.cpcardiol.2024.102860","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Diagnosis of cardiac amyloidosis (CA) is often delayed due to variability in clinical presentation. The electrocardiogram (ECG) is one of the most common and widely available tools for assessing cardiovascular diseases. Artificial intelligence (AI) models analyzing ECG have recently been developed to detect CA, but their pooled accuracy is yet to be evaluated.</div></div><div><h3>Methods</h3><div>We searched the Scopus, MEDLINE, and Cochrane CENTRAL databases until April 2024 for studies assessing AI-enhanced ECG diagnosis of CA. Studies reporting findings from derivation and validation cohorts were included. Studies combining other diagnostic modalities, such as echocardiography, were excluded. The outcome of interest was the area under the receiver operating characteristic curve (AUC) for overall CA and subtypes transthyretin amyloidosis (ATTR) and light chain amyloidosis (AL). Analysis was done using RevMan 5.4.1 general inverse variance random effects model, pooling data for AUC and 95 % confidence intervals (CI).</div></div><div><h3>Results</h3><div>Five studies comprising seven cohorts met the eligibility criteria. The total derivation and validation cohorts were 8,639 and 3,843, respectively, although one study did not describe this data. The AUC was 0.89 (95 % CI, 0.86-0.91) for cardiac amyloidosis, 0.90 (95 % CI, 0.86-0.95) for ATTR amyloidosis, and 0.80 (95 % CI, 0.80-0.93) for AL amyloidosis.</div></div><div><h3>Conclusion</h3><div>AI-enhanced ECG models effectively detect CA and may provide a valuable tool for the early detection and intervention of this disease.</div></div>","PeriodicalId":51006,"journal":{"name":"Current Problems in Cardiology","volume":"49 12","pages":"Article 102860"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Problems in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014628062400495X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Diagnosis of cardiac amyloidosis (CA) is often delayed due to variability in clinical presentation. The electrocardiogram (ECG) is one of the most common and widely available tools for assessing cardiovascular diseases. Artificial intelligence (AI) models analyzing ECG have recently been developed to detect CA, but their pooled accuracy is yet to be evaluated.
Methods
We searched the Scopus, MEDLINE, and Cochrane CENTRAL databases until April 2024 for studies assessing AI-enhanced ECG diagnosis of CA. Studies reporting findings from derivation and validation cohorts were included. Studies combining other diagnostic modalities, such as echocardiography, were excluded. The outcome of interest was the area under the receiver operating characteristic curve (AUC) for overall CA and subtypes transthyretin amyloidosis (ATTR) and light chain amyloidosis (AL). Analysis was done using RevMan 5.4.1 general inverse variance random effects model, pooling data for AUC and 95 % confidence intervals (CI).
Results
Five studies comprising seven cohorts met the eligibility criteria. The total derivation and validation cohorts were 8,639 and 3,843, respectively, although one study did not describe this data. The AUC was 0.89 (95 % CI, 0.86-0.91) for cardiac amyloidosis, 0.90 (95 % CI, 0.86-0.95) for ATTR amyloidosis, and 0.80 (95 % CI, 0.80-0.93) for AL amyloidosis.
Conclusion
AI-enhanced ECG models effectively detect CA and may provide a valuable tool for the early detection and intervention of this disease.
期刊介绍:
Under the editorial leadership of noted cardiologist Dr. Hector O. Ventura, Current Problems in Cardiology provides focused, comprehensive coverage of important clinical topics in cardiology. Each monthly issues, addresses a selected clinical problem or condition, including pathophysiology, invasive and noninvasive diagnosis, drug therapy, surgical management, and rehabilitation; or explores the clinical applications of a diagnostic modality or a particular category of drugs. Critical commentary from the distinguished editorial board accompanies each monograph, providing readers with additional insights. An extensive bibliography in each issue saves hours of library research.