Giovana P. Angelice, Tairine M. Barros, Vanessa A. Marques, Livia M. Villar, Barbara V. Lago, Francisco C.A. Mello
{"title":"Exploring genetic diversity of hepatitis D virus full-length genome in Brazil: Discovery of a novel HDV-8 subgenotype beyond African borders","authors":"Giovana P. Angelice, Tairine M. Barros, Vanessa A. Marques, Livia M. Villar, Barbara V. Lago, Francisco C.A. Mello","doi":"10.1016/j.meegid.2024.105671","DOIUrl":null,"url":null,"abstract":"<div><div>Hepatitis D virus (HDV) is currently classified into 8 genotypes (1 to 8) and several subgenotypes, with distinct distribution worldwide. However, due to the scarcity of complete genome sequences in databases, this classification is constantly being updated and tends to be regularly revisited in upcoming years as more sequence data becomes available. Aiming to increase knowledge about the genetic variability of HDV, this study presents the full-length genomes of 11 HDV samples collected in Brazil in endemic and non-endemic regions, including the first complete genomes of the genotypes 5 and 8 obtained outside Africa. We also determined the co-infecting HBV genotypes to investigate their prevalence among the HDV-infected individuals throughout the country. Whole genome sequencing confirmed our previous findings based on a partial fragment of the HDV genome, in which HDV subgenoypes 3c (9/11; 81.8 %), 5b (1/11; 9.1 %) and one HDV-8 sequence (1/11; 9.1 %) were detected. As previously observed, HDV-8 formed a distinct branch apart from subgenotypes 8a and 8b, a monophyletic clade representing a novel HDV-8 subgenotype, designated as 8c. Among HDV-3 samples, the main co-infecting HBV genotype found was HBV-F (4/8; 50 %), reflecting the higher incidence of this native South American genotype in the endemic Amazon Basin. Both samples infected with HDV-5 and HDV-8 were coinfected with HBV genotype E, also a genotype with African origin. Our findings based on complete genome sequence of HDV corroborated our results based on a partial region of the HDV genome of a novel HDV-8 subgenotype and reinforced the need to use full-length genomes to properly subdivide genotypes with very low intragroup genetic variability, such as HDV-3. The provision of these complete genomes is expected to contribute to the enrichment of sequence databases for future molecular and evolutionary investigations of HDV.</div></div>","PeriodicalId":54986,"journal":{"name":"Infection Genetics and Evolution","volume":"125 ","pages":"Article 105671"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Genetics and Evolution","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567134824001229","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatitis D virus (HDV) is currently classified into 8 genotypes (1 to 8) and several subgenotypes, with distinct distribution worldwide. However, due to the scarcity of complete genome sequences in databases, this classification is constantly being updated and tends to be regularly revisited in upcoming years as more sequence data becomes available. Aiming to increase knowledge about the genetic variability of HDV, this study presents the full-length genomes of 11 HDV samples collected in Brazil in endemic and non-endemic regions, including the first complete genomes of the genotypes 5 and 8 obtained outside Africa. We also determined the co-infecting HBV genotypes to investigate their prevalence among the HDV-infected individuals throughout the country. Whole genome sequencing confirmed our previous findings based on a partial fragment of the HDV genome, in which HDV subgenoypes 3c (9/11; 81.8 %), 5b (1/11; 9.1 %) and one HDV-8 sequence (1/11; 9.1 %) were detected. As previously observed, HDV-8 formed a distinct branch apart from subgenotypes 8a and 8b, a monophyletic clade representing a novel HDV-8 subgenotype, designated as 8c. Among HDV-3 samples, the main co-infecting HBV genotype found was HBV-F (4/8; 50 %), reflecting the higher incidence of this native South American genotype in the endemic Amazon Basin. Both samples infected with HDV-5 and HDV-8 were coinfected with HBV genotype E, also a genotype with African origin. Our findings based on complete genome sequence of HDV corroborated our results based on a partial region of the HDV genome of a novel HDV-8 subgenotype and reinforced the need to use full-length genomes to properly subdivide genotypes with very low intragroup genetic variability, such as HDV-3. The provision of these complete genomes is expected to contribute to the enrichment of sequence databases for future molecular and evolutionary investigations of HDV.
期刊介绍:
(aka Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases -- MEEGID)
Infectious diseases constitute one of the main challenges to medical science in the coming century. The impressive development of molecular megatechnologies and of bioinformatics have greatly increased our knowledge of the evolution, transmission and pathogenicity of infectious diseases. Research has shown that host susceptibility to many infectious diseases has a genetic basis. Furthermore, much is now known on the molecular epidemiology, evolution and virulence of pathogenic agents, as well as their resistance to drugs, vaccines, and antibiotics. Equally, research on the genetics of disease vectors has greatly improved our understanding of their systematics, has increased our capacity to identify target populations for control or intervention, and has provided detailed information on the mechanisms of insecticide resistance.
However, the genetics and evolutionary biology of hosts, pathogens and vectors have tended to develop as three separate fields of research. This artificial compartmentalisation is of concern due to our growing appreciation of the strong co-evolutionary interactions among hosts, pathogens and vectors.
Infection, Genetics and Evolution and its companion congress [MEEGID](http://www.meegidconference.com/) (for Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) are the main forum acting for the cross-fertilization between evolutionary science and biomedical research on infectious diseases.
Infection, Genetics and Evolution is the only journal that welcomes articles dealing with the genetics and evolutionary biology of hosts, pathogens and vectors, and coevolution processes among them in relation to infection and disease manifestation. All infectious models enter the scope of the journal, including pathogens of humans, animals and plants, either parasites, fungi, bacteria, viruses or prions. The journal welcomes articles dealing with genetics, population genetics, genomics, postgenomics, gene expression, evolutionary biology, population dynamics, mathematical modeling and bioinformatics. We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services .