PHF8/KDM7B: A Versatile Histone Demethylase and Epigenetic Modifier in Nervous System Disease and Cancers.

IF 2.5 Q3 GENETICS & HEREDITY Epigenomes Pub Date : 2024-09-15 DOI:10.3390/epigenomes8030036
Tingyu Fan, Jianlian Xie, Guo Huang, Lili Li, Xi Zeng, Qian Tao
{"title":"PHF8/KDM7B: A Versatile Histone Demethylase and Epigenetic Modifier in Nervous System Disease and Cancers.","authors":"Tingyu Fan, Jianlian Xie, Guo Huang, Lili Li, Xi Zeng, Qian Tao","doi":"10.3390/epigenomes8030036","DOIUrl":null,"url":null,"abstract":"<p><p>Many human diseases, such as malignant tumors and neurological diseases, have a complex pathophysiological etiology, often accompanied by aberrant epigenetic changes including various histone modifications. Plant homologous domain finger protein 8 (PHF8), also known as lysine-specific demethylase 7B (KDM7B), is a critical histone lysine demethylase (KDM) playing an important role in epigenetic modification. Characterized by the zinc finger plant homology domain (PHD) and the Jumonji C (JmjC) domain, PHF8 preferentially binds to H3K4me3 and erases repressive methyl marks, including H3K9me1/2, H3K27me1, and H4K20me1. PHF8 is indispensable for developmental processes and the loss of PHF8 enzyme activity is linked to neurodevelopmental disorders. Moreover, increasing evidence shows that PHF8 is highly expressed in multiple tumors as an oncogenic factor. These findings indicate that studying the role of PHF8 will facilitate the development of novel therapeutic agents by the manipulation of PHF8 demethylation activity. Herein, we summarize the current knowledge of PHF8 about its structure and demethylation activity and its involvement in development and human diseases, with an emphasis on nervous system disorders and cancer. This review will update our understanding of PHF8 and promote the clinical transformation of its predictive and therapeutic value.</p>","PeriodicalId":55768,"journal":{"name":"Epigenomes","volume":"8 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417953/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/epigenomes8030036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Many human diseases, such as malignant tumors and neurological diseases, have a complex pathophysiological etiology, often accompanied by aberrant epigenetic changes including various histone modifications. Plant homologous domain finger protein 8 (PHF8), also known as lysine-specific demethylase 7B (KDM7B), is a critical histone lysine demethylase (KDM) playing an important role in epigenetic modification. Characterized by the zinc finger plant homology domain (PHD) and the Jumonji C (JmjC) domain, PHF8 preferentially binds to H3K4me3 and erases repressive methyl marks, including H3K9me1/2, H3K27me1, and H4K20me1. PHF8 is indispensable for developmental processes and the loss of PHF8 enzyme activity is linked to neurodevelopmental disorders. Moreover, increasing evidence shows that PHF8 is highly expressed in multiple tumors as an oncogenic factor. These findings indicate that studying the role of PHF8 will facilitate the development of novel therapeutic agents by the manipulation of PHF8 demethylation activity. Herein, we summarize the current knowledge of PHF8 about its structure and demethylation activity and its involvement in development and human diseases, with an emphasis on nervous system disorders and cancer. This review will update our understanding of PHF8 and promote the clinical transformation of its predictive and therapeutic value.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PHF8/KDM7B:神经系统疾病和癌症中的多功能组蛋白去甲基化酶和表观遗传修饰剂
恶性肿瘤和神经系统疾病等许多人类疾病的病理生理病因复杂,往往伴随着包括各种组蛋白修饰在内的表观遗传学异常变化。植物同源结构域指蛋白8(PHF8)又称赖氨酸特异性去甲基化酶7B(KDM7B),是一种关键的组蛋白赖氨酸去甲基化酶(KDM),在表观遗传修饰中发挥着重要作用。PHF8 具有锌指植物同源结构域(PHD)和 Jumonji C(JmjC)结构域,能优先结合 H3K4me3 并清除抑制性甲基标记,包括 H3K9me1/2、H3K27me1 和 H4K20me1。PHF8 在发育过程中不可或缺,PHF8 酶活性的丧失与神经发育障碍有关。此外,越来越多的证据表明,PHF8 作为一种致癌因子在多种肿瘤中高度表达。这些发现表明,研究 PHF8 的作用将有助于通过操纵 PHF8 的去甲基化活性来开发新型治疗药物。在此,我们总结了目前有关 PHF8 的知识,包括它的结构和去甲基化活性,以及它在发育和人类疾病中的参与,重点是神经系统疾病和癌症。这篇综述将更新我们对 PHF8 的认识,并促进其预测和治疗价值的临床转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Epigenomes
Epigenomes GENETICS & HEREDITY-
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
11 weeks
期刊最新文献
Environmental Factor Index (EFI): A Novel Approach to Measure the Strength of Environmental Influence on DNA Methylation in Identical Twins. Age-Dependent DNA Methylation Variability on the X-Chromosome in Male and Female Twins. Histone Modification Pathways Suppressing Cryptic Transcription. Epigenetic Landscape of DNA Methylation in Pancreatic Ductal Adenocarcinoma. Transcription Factors Are Involved in Wizened Bud Occurrence During the Growing Season in the Pyrus pyrifolia Cultivar 'Sucui 1'.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1