Rhizobium etli CFN42 and Sinorhizobium meliloti 1021 bioinformatic transcriptional regulatory networks from culture and symbiosis.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Frontiers in bioinformatics Pub Date : 2024-08-28 eCollection Date: 2024-01-01 DOI:10.3389/fbinf.2024.1419274
Hermenegildo Taboada-Castro, Alfredo José Hernández-Álvarez, Juan Miguel Escorcia-Rodríguez, Julio Augusto Freyre-González, Edgardo Galán-Vásquez, Sergio Encarnación-Guevara
{"title":"<i>Rhizobium etli</i> CFN42 and <i>Sinorhizobium meliloti</i> 1021 bioinformatic transcriptional regulatory networks from culture and symbiosis.","authors":"Hermenegildo Taboada-Castro, Alfredo José Hernández-Álvarez, Juan Miguel Escorcia-Rodríguez, Julio Augusto Freyre-González, Edgardo Galán-Vásquez, Sergio Encarnación-Guevara","doi":"10.3389/fbinf.2024.1419274","DOIUrl":null,"url":null,"abstract":"<p><p><i>Rhizobium etli</i> CFN42 proteome-transcriptome mixed data of exponential growth and nitrogen-fixing bacteroids, as well as <i>Sinorhizobium meliloti</i> 1021 transcriptome data of growth and nitrogen-fixing bacteroids, were integrated into transcriptional regulatory networks (TRNs). The one-step construction network consisted of a matrix-clustering analysis of matrices of the gene profile and all matrices of the transcription factors (TFs) of their genome. The networks were constructed with the prediction of regulatory network application of the RhizoBindingSites database (http://rhizobindingsites.ccg.unam.mx/). The deduced free-living <i>Rhizobium etli</i> network contained 1,146 genes, including 380 TFs and 12 sigma factors. In addition, the bacteroid <i>R. etli</i> CFN42 network contained 884 genes, where 364 were TFs, and 12 were sigma factors, whereas the deduced free-living <i>Sinorhizobium meliloti</i> 1021 network contained 643 genes, where 259 were TFs and seven were sigma factors, and the bacteroid <i>Sinorhizobium meliloti</i> 1021 network contained 357 genes, where 210 were TFs and six were sigma factors. The similarity of these deduced condition-dependent networks and the biological <i>E. coli</i> and <i>B. subtilis</i> independent condition networks segregates from the random Erdös-Rényi networks. Deduced networks showed a low average clustering coefficient. They were not scale-free, showing a gradually diminishing hierarchy of TFs in contrast to the hierarchy role of the sigma factor <i>rpoD</i> in the <i>E. coli</i> K12 network. For rhizobia networks, partitioning the genome in the chromosome, chromids, and plasmids, where essential genes are distributed, and the symbiotic ability that is mostly coded in plasmids, may alter the structure of these deduced condition-dependent networks. It provides potential TF gen-target relationship data for constructing regulons, which are the basic units of a TRN.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1419274"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2024.1419274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rhizobium etli CFN42 proteome-transcriptome mixed data of exponential growth and nitrogen-fixing bacteroids, as well as Sinorhizobium meliloti 1021 transcriptome data of growth and nitrogen-fixing bacteroids, were integrated into transcriptional regulatory networks (TRNs). The one-step construction network consisted of a matrix-clustering analysis of matrices of the gene profile and all matrices of the transcription factors (TFs) of their genome. The networks were constructed with the prediction of regulatory network application of the RhizoBindingSites database (http://rhizobindingsites.ccg.unam.mx/). The deduced free-living Rhizobium etli network contained 1,146 genes, including 380 TFs and 12 sigma factors. In addition, the bacteroid R. etli CFN42 network contained 884 genes, where 364 were TFs, and 12 were sigma factors, whereas the deduced free-living Sinorhizobium meliloti 1021 network contained 643 genes, where 259 were TFs and seven were sigma factors, and the bacteroid Sinorhizobium meliloti 1021 network contained 357 genes, where 210 were TFs and six were sigma factors. The similarity of these deduced condition-dependent networks and the biological E. coli and B. subtilis independent condition networks segregates from the random Erdös-Rényi networks. Deduced networks showed a low average clustering coefficient. They were not scale-free, showing a gradually diminishing hierarchy of TFs in contrast to the hierarchy role of the sigma factor rpoD in the E. coli K12 network. For rhizobia networks, partitioning the genome in the chromosome, chromids, and plasmids, where essential genes are distributed, and the symbiotic ability that is mostly coded in plasmids, may alter the structure of these deduced condition-dependent networks. It provides potential TF gen-target relationship data for constructing regulons, which are the basic units of a TRN.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根瘤菌 CFN42 和瓜萎镰刀菌 1021 从培养和共生中获得生物信息转录调控网络。
将Rhizobium etli CFN42指数生长和固氮菌体的蛋白质组-转录组混合数据以及Sinorhizobium meliloti 1021生长和固氮菌体的转录组数据整合到转录调控网络(TRN)中。一步构建网络包括对基因图谱矩阵及其基因组中所有转录因子(TFs)矩阵进行矩阵聚类分析。这些网络是利用RhizoBindingSites数据库(http://rhizobindingsites.ccg.unam.mx/)的预测调控网络应用程序构建的。推导出的自由生活根瘤菌网络包含 1,146 个基因,其中包括 380 个 TF 和 12 个 sigma 因子。此外,R. etli CFN42菌体网络包含884个基因,其中364个为TFs,12个为sigma因子,而推导出的自由生活的瓜萎镰刀菌1021菌体网络包含643个基因,其中259个为TFs,7个为sigma因子,瓜萎镰刀菌1021菌体网络包含357个基因,其中210个为TFs,6个为sigma因子。这些推导出的依赖于条件的网络与生物大肠杆菌和枯草杆菌独立条件网络的相似性与随机的埃尔德斯-雷尼网络相分离。推导出的网络显示出较低的平均聚类系数。它们不是无标度的,显示出 TFs 逐渐减少的层次结构,这与大肠杆菌 K12 网络中 sigma 因子 rpoD 的层次结构作用形成鲜明对比。对于根瘤菌网络而言,将基因组划分为染色体、染色体和质粒(基本基因分布在染色体、染色体和质粒中),以及主要编码在质粒中的共生能力,可能会改变这些推导出的条件依赖性网络的结构。它为构建调控子(TRN 的基本单位)提供了潜在的 TF 基因-靶标关系数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊最新文献
Quantification of muscle fiber malformations using edge detection to investigate chronic muscle pressure ulcers. Computational identification and characterization of chitinase 1 and chitinase 2 from neotropical isolates of Beauveria bassiana. DCMA: faster protein backbone dihedral angle prediction using a dilated convolutional attention-based neural network. Identification of novel drug targets for Helicobacter pylori: structure-based virtual screening of potential inhibitors against DAH7PS protein involved in the shikimate pathway. Editorial: Women in bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1