Automated machine learning with R: AutoML tools for beginners in clinical research.

Youngho Park
{"title":"Automated machine learning with R: AutoML tools for beginners in clinical research.","authors":"Youngho Park","doi":"10.7602/jmis.2024.27.3.129","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, interest in machine learning (ML) has increased as the application fields have expanded significantly. Although ML methods excel in many fields, establishing an ML pipeline requires considerable time and human resources. Automated ML (AutoML) tools offer a solution by automating repetitive tasks, such as data preprocessing, model selection, hyperparameter optimization, and prediction analysis. This review introduces the use of AutoML tools for general research, including clinical studies. In particular, it outlines a simple approach that is accessible to beginners using the R programming language (R Foundation for Statistical Computing). In addition, the practical code and output results for binary classification are provided to facilitate direct application by clinical researchers in future studies.</p>","PeriodicalId":73832,"journal":{"name":"Journal of minimally invasive surgery","volume":"27 3","pages":"129-137"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416892/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of minimally invasive surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7602/jmis.2024.27.3.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, interest in machine learning (ML) has increased as the application fields have expanded significantly. Although ML methods excel in many fields, establishing an ML pipeline requires considerable time and human resources. Automated ML (AutoML) tools offer a solution by automating repetitive tasks, such as data preprocessing, model selection, hyperparameter optimization, and prediction analysis. This review introduces the use of AutoML tools for general research, including clinical studies. In particular, it outlines a simple approach that is accessible to beginners using the R programming language (R Foundation for Statistical Computing). In addition, the practical code and output results for binary classification are provided to facilitate direct application by clinical researchers in future studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 R 的自动机器学习:面向临床研究初学者的 AutoML 工具。
最近,随着应用领域的大幅扩展,人们对机器学习(ML)的兴趣与日俱增。虽然 ML 方法在许多领域都很出色,但建立 ML 管道需要大量时间和人力资源。自动化 ML(AutoML)工具提供了一种解决方案,它能将数据预处理、模型选择、超参数优化和预测分析等重复性任务自动化。本综述介绍了 AutoML 工具在一般研究(包括临床研究)中的应用。特别是,它概述了一种使用 R 编程语言(R 统计计算基础)的简单方法,初学者也可以使用。此外,还提供了二元分类的实用代码和输出结果,以方便临床研究人员在未来的研究中直接应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acute peritonitis caused by a ruptured urachal cyst accompanied by omphalitis in an adult: a case report and literature review. Analyzing the emergence of surgical robotics in Africa: a scoping review of pioneering procedures, platforms utilized, and outcome meta-analysis. Assessment of mechanical bowel preparation prior to nephrectomy in the minimally invasive surgery era: insights from a national database analysis in the United States. Automated machine learning with R: AutoML tools for beginners in clinical research. Is prophylactic abdominal drainage mandatory in laparoscopic hemicolectomy?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1