Nathalia F Dias, João G A Bergamasco, Maíra C Scarpelli, Deivid G Silva, Talisson S Chaves, Diego Bittencourt, Ricardo A Medalha, Paulo C Carello Filho, Eduardo O De Souza, Carlos Ugrinowitsch, Cleiton A Libardi
{"title":"Changes in muscle cross-sectional area during two menstrual cycles may not be exclusively attributed to resistance training.","authors":"Nathalia F Dias, João G A Bergamasco, Maíra C Scarpelli, Deivid G Silva, Talisson S Chaves, Diego Bittencourt, Ricardo A Medalha, Paulo C Carello Filho, Eduardo O De Souza, Carlos Ugrinowitsch, Cleiton A Libardi","doi":"10.1139/apnm-2024-0004","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the impact of menstrual cycle (MC) phases and resistance training (RT) on muscle cross-sectional area (CSA) in two MCs utilizing a within-subject design. Twenty women with regular MCs had their legs randomly allocated to either the control (CON) or RT condition, which included 16 training sessions over two MCs. CSA, estradiol (E2), and progesterone (P4) were assessed during the menstruation (M), ovulation (O), and luteal (L) phases in the first (M1, O1, L1) and second (M2, O2, L2) MCs and at the beginning of the third MC (M3). P4 values were significantly higher during the luteal phase than during menstruation (<i>P</i> < 0.0001) and ovulation (<i>P</i> < 0.0001). No significant differences in E2 concentrations were observed between the MC phases (<i>P</i> = 0.08). For the RT condition, the CSA showed significant increases at O2, L2, and M3 compared to baseline (M1) (all <i>P</i> < 0.0001). No significant changes were observed for the CON condition during the two MCs (<i>P</i> > 0.05). However, RT condition showed a significant change in average CSA across two MCs. Additionally, individual analyses revealed that 19 participants showed variation in CSA above or below the minimum detectable difference during the two MCs. These findings suggest that changes in muscle CSA observed during two MCs may not be exclusively attributed to RT.</p>","PeriodicalId":93878,"journal":{"name":"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/apnm-2024-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the impact of menstrual cycle (MC) phases and resistance training (RT) on muscle cross-sectional area (CSA) in two MCs utilizing a within-subject design. Twenty women with regular MCs had their legs randomly allocated to either the control (CON) or RT condition, which included 16 training sessions over two MCs. CSA, estradiol (E2), and progesterone (P4) were assessed during the menstruation (M), ovulation (O), and luteal (L) phases in the first (M1, O1, L1) and second (M2, O2, L2) MCs and at the beginning of the third MC (M3). P4 values were significantly higher during the luteal phase than during menstruation (P < 0.0001) and ovulation (P < 0.0001). No significant differences in E2 concentrations were observed between the MC phases (P = 0.08). For the RT condition, the CSA showed significant increases at O2, L2, and M3 compared to baseline (M1) (all P < 0.0001). No significant changes were observed for the CON condition during the two MCs (P > 0.05). However, RT condition showed a significant change in average CSA across two MCs. Additionally, individual analyses revealed that 19 participants showed variation in CSA above or below the minimum detectable difference during the two MCs. These findings suggest that changes in muscle CSA observed during two MCs may not be exclusively attributed to RT.