Riccardo Monica, Dario Lodi Rizzini, Jacopo Aleotti
{"title":"Adaptive Complementary Filter for Hybrid Inside-Out Outside-In HMD Tracking With Smooth Transitions.","authors":"Riccardo Monica, Dario Lodi Rizzini, Jacopo Aleotti","doi":"10.1109/TVCG.2024.3464738","DOIUrl":null,"url":null,"abstract":"<p><p>Head-mounted displays (HMDs) in room-scale virtual reality are usually tracked using inside-out visual SLAM algorithms. Alternatively, to track the motion of the HMD with respect to a fixed real-world reference frame, an outside-in instrumentation like a motion capture system can be adopted. However, outside-in tracking systems may temporarily lose tracking as they suffer by occlusion and blind spots. A possible solution is to adopt a hybrid approach where the inside-out tracker of the HMD is augmented with an outside-in sensing system. On the other hand, when the tracking signal of the outside-in system is recovered after a loss of tracking the transition from inside-out tracking to hybrid tracking may generate a discontinuity, i.e a sudden change of the virtual viewpoint, that can be uncomfortable for the user. Therefore, hybrid tracking solutions for HMDs require advanced sensor fusion algorithms to obtain a smooth transition. This work proposes a method for hybrid tracking of a HMD with smooth transitions based on an adaptive complementary filter. The proposed approach can be configured with several parameters that determine a trade-off between user experience and tracking error. A user study was carried out in a room-scale virtual reality environment, where users carried out two different tasks while multiple signal tracking losses of the outside-in sensor system occurred. The results show that the proposed approach improves user experience compared to a standard Extended Kalman Filter, and that tracking error is lower compared to a state-of-the-art complementary filter when configured for the same quality of user experience.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2024.3464738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Head-mounted displays (HMDs) in room-scale virtual reality are usually tracked using inside-out visual SLAM algorithms. Alternatively, to track the motion of the HMD with respect to a fixed real-world reference frame, an outside-in instrumentation like a motion capture system can be adopted. However, outside-in tracking systems may temporarily lose tracking as they suffer by occlusion and blind spots. A possible solution is to adopt a hybrid approach where the inside-out tracker of the HMD is augmented with an outside-in sensing system. On the other hand, when the tracking signal of the outside-in system is recovered after a loss of tracking the transition from inside-out tracking to hybrid tracking may generate a discontinuity, i.e a sudden change of the virtual viewpoint, that can be uncomfortable for the user. Therefore, hybrid tracking solutions for HMDs require advanced sensor fusion algorithms to obtain a smooth transition. This work proposes a method for hybrid tracking of a HMD with smooth transitions based on an adaptive complementary filter. The proposed approach can be configured with several parameters that determine a trade-off between user experience and tracking error. A user study was carried out in a room-scale virtual reality environment, where users carried out two different tasks while multiple signal tracking losses of the outside-in sensor system occurred. The results show that the proposed approach improves user experience compared to a standard Extended Kalman Filter, and that tracking error is lower compared to a state-of-the-art complementary filter when configured for the same quality of user experience.