{"title":"Online control parameter optimization design for multi-machine coordinated loading system of hazardous substances","authors":"Zuoxun Wang, Chuanyu Cui, Jinxue Sui, Changkun Guo","doi":"10.1016/j.isatra.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>To address the parameter instability issues in hazardous materials handling during multi-machine loading and unloading operations, we propose a Full-Scale Smart Parameter Optimization Control (FSPOC) system specifically designed for multi-machine coordination. This system leverages a novel fish scale prediction algorithm tailored for cooperative multi-machine environments. Initially, the fish scale prediction algorithm, inspired by bionic fish scales, is developed to predict future system behavior by analyzing historical data. Building on this algorithm, we introduce a disturbance cancellation control theorem and design a parameter optimization controller to enhance stability in high-dimensional nonlinear spaces. The FSPOC method is then applied to a multi-machine cooperative system, enabling online distributed parameter optimization for complex systems with multiple degrees of freedom. The effectiveness of the proposed method was validated through simulations, where it was compared with two other optimization techniques: Genetic Algorithm-based PID (GAPID) and Chaotic Atomic Search Algorithm-based PID (CHASO). The simulation results confirm the superiority of the FSPOC method.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"154 ","pages":"Pages 213-227"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824004269","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
To address the parameter instability issues in hazardous materials handling during multi-machine loading and unloading operations, we propose a Full-Scale Smart Parameter Optimization Control (FSPOC) system specifically designed for multi-machine coordination. This system leverages a novel fish scale prediction algorithm tailored for cooperative multi-machine environments. Initially, the fish scale prediction algorithm, inspired by bionic fish scales, is developed to predict future system behavior by analyzing historical data. Building on this algorithm, we introduce a disturbance cancellation control theorem and design a parameter optimization controller to enhance stability in high-dimensional nonlinear spaces. The FSPOC method is then applied to a multi-machine cooperative system, enabling online distributed parameter optimization for complex systems with multiple degrees of freedom. The effectiveness of the proposed method was validated through simulations, where it was compared with two other optimization techniques: Genetic Algorithm-based PID (GAPID) and Chaotic Atomic Search Algorithm-based PID (CHASO). The simulation results confirm the superiority of the FSPOC method.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.