{"title":"Rolling bearings fault diagnosis based on two-stage signal fusion and deep multi-scale multi-sensor network","authors":"","doi":"10.1016/j.isatra.2024.08.033","DOIUrl":null,"url":null,"abstract":"<div><div>In order to realize high-precision diagnosis of bearings faults in a multi-sensor detection environment, a fault diagnosis method based on two-stage signal fusion and deep multi-scale multi-sensor networks is proposed. Firstly, the signals are decomposed and fused using weighted empirical wavelet transform to enhance weak features and reduce noise. Secondly, an improved random weighting algorithm is proposed to perform a second weighted fusion of the signals to reduce the total mean square error. The fused signals are input into the deep multi-scale residual network, the feature information of different convolutional layers is extracted through dilated convolution, and the features are fused using pyramid theory. Finally, the bearings states are classified according to the fusion features. Experiment results show the effectiveness and superiority of this method.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824004142","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to realize high-precision diagnosis of bearings faults in a multi-sensor detection environment, a fault diagnosis method based on two-stage signal fusion and deep multi-scale multi-sensor networks is proposed. Firstly, the signals are decomposed and fused using weighted empirical wavelet transform to enhance weak features and reduce noise. Secondly, an improved random weighting algorithm is proposed to perform a second weighted fusion of the signals to reduce the total mean square error. The fused signals are input into the deep multi-scale residual network, the feature information of different convolutional layers is extracted through dilated convolution, and the features are fused using pyramid theory. Finally, the bearings states are classified according to the fusion features. Experiment results show the effectiveness and superiority of this method.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.