Huabin Chen , Han Xiao , Bing Wu , Xin Shi , Changbiao Guan , Jianzhong Hu , Tao Zhang , Hongbin Lu
{"title":"The effects of primary cilia-mediated mechanical stimulation on nestin+-BMSCs during bone-tendon healing","authors":"Huabin Chen , Han Xiao , Bing Wu , Xin Shi , Changbiao Guan , Jianzhong Hu , Tao Zhang , Hongbin Lu","doi":"10.1016/j.jare.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Mechanical stimulation has been proven to promote bone-tendon interface (BTI) healing, but the mechanism remains unclear.</div></div><div><h3>Objective</h3><div>To investigate the effects of mechanical stimulation on the biological behavior of nestin<sup>+</sup>-bone mesenchymal stem cells (BMSCs) during the BTI healing, and to reveal the mechanisms of mechanical stimulation affecting BTI healing by primary cilia on the nestin<sup>+</sup>-BMSCs.</div></div><div><h3>Methods</h3><div>Transgenic tracing mice (nestin cre<sup>ERT2</sup>:: IFT88<sup>fl/fl</sup>/ROSA26 YFP) with primary cilia on nestin<sup>+</sup>-BMSCs conditioned knocked out were constructed, and the littermates (nestin cre<sup>ERT2</sup>:: ROSA26 YFP) with normal cilia on nestin<sup>+</sup>-BMSCs were the control. After establishing mouse supraspinatus insertion injury models, samples were collected at week-2 (n = 5 per group), 4 and 8 (n = 15 per group, respectively). In vivo, the repair efficiency was evaluated by histology, imaging, biomechanics, and the migration of nestin<sup>+</sup>-BMSCs, detected by immunofluorescence staining. In vitro, nestin<sup>+</sup> BMSCs were sorted and stimulated by tensile force to study the mechanisms of primary cilium-mediated mechanosensitive basis.</div></div><div><h3>Results</h3><div>Mechanical stimulation (MS) accelerated the recruitment of nestin<sup>+</sup>-BMSCs and promoted osteogenic and chondrogenic capacity. Histological, imaging and biomechanical results showed that the BTI healing quality of the IFT88<sup>+/+</sup>, MS group was better than that of the other groups. After the conditionally knockout IFT88 in nestin<sup>+</sup>-BMSCs, the repair ability of the BTI was obviously deteriorated, even though mechanical stimulation did not increase significantly (IFT88<sup>-/-</sup>, MS group). In vitro results showed the tensile loading enhanced the proliferation, migration and osteogenic or chondrogenic gene expression of nestin<sup>+</sup>-BMSCs with normal cilia. On the other hand, osteogenesis and chondrogenic expression were significantly decreased after inhibiting actin- Hippo/YAP pathway components.</div></div><div><h3>Conclusion</h3><div>The primary cilia mediated mechanical stimulation regulated osteogenic and chondrogenic differentiation potential of nestin<sup>+</sup>-BMSCs through the actin- Hippo/YAP pathway, and then promoted the BTI healing process.</div></div>","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"74 ","pages":"Pages 415-427"},"PeriodicalIF":13.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090123224004144","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Mechanical stimulation has been proven to promote bone-tendon interface (BTI) healing, but the mechanism remains unclear.
Objective
To investigate the effects of mechanical stimulation on the biological behavior of nestin+-bone mesenchymal stem cells (BMSCs) during the BTI healing, and to reveal the mechanisms of mechanical stimulation affecting BTI healing by primary cilia on the nestin+-BMSCs.
Methods
Transgenic tracing mice (nestin creERT2:: IFT88fl/fl/ROSA26 YFP) with primary cilia on nestin+-BMSCs conditioned knocked out were constructed, and the littermates (nestin creERT2:: ROSA26 YFP) with normal cilia on nestin+-BMSCs were the control. After establishing mouse supraspinatus insertion injury models, samples were collected at week-2 (n = 5 per group), 4 and 8 (n = 15 per group, respectively). In vivo, the repair efficiency was evaluated by histology, imaging, biomechanics, and the migration of nestin+-BMSCs, detected by immunofluorescence staining. In vitro, nestin+ BMSCs were sorted and stimulated by tensile force to study the mechanisms of primary cilium-mediated mechanosensitive basis.
Results
Mechanical stimulation (MS) accelerated the recruitment of nestin+-BMSCs and promoted osteogenic and chondrogenic capacity. Histological, imaging and biomechanical results showed that the BTI healing quality of the IFT88+/+, MS group was better than that of the other groups. After the conditionally knockout IFT88 in nestin+-BMSCs, the repair ability of the BTI was obviously deteriorated, even though mechanical stimulation did not increase significantly (IFT88-/-, MS group). In vitro results showed the tensile loading enhanced the proliferation, migration and osteogenic or chondrogenic gene expression of nestin+-BMSCs with normal cilia. On the other hand, osteogenesis and chondrogenic expression were significantly decreased after inhibiting actin- Hippo/YAP pathway components.
Conclusion
The primary cilia mediated mechanical stimulation regulated osteogenic and chondrogenic differentiation potential of nestin+-BMSCs through the actin- Hippo/YAP pathway, and then promoted the BTI healing process.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.