Huizhen Chen, Yu Chen, Yi Zhou, Shensong Cao, Jing Lu, Lianyi Han, Thomas Worzfeld, Jean Krutmann, Jiucun Wang, Jingjing Xia
{"title":"Optimizing Skin Surface Metabolomics: A Comprehensive Evaluation of Sampling Methods, Extraction Solvents, and Analytical Techniques.","authors":"Huizhen Chen, Yu Chen, Yi Zhou, Shensong Cao, Jing Lu, Lianyi Han, Thomas Worzfeld, Jean Krutmann, Jiucun Wang, Jingjing Xia","doi":"10.1016/j.jid.2024.08.027","DOIUrl":null,"url":null,"abstract":"<p><p>Characterizing the metabolite fingerprint from the skin surface provides invaluable insights into skin biology and microbe-host interactions. To ensure data accuracy and reproducibility, it is essential to develop standard operating procedures for skin surface metabolomics. However, there is a notable lack of studies in this area. In this study, we thoroughly evaluated different sampling materials, extraction solvents, taping methods (frequency and number of tapes), and analytical techniques to optimize skin surface metabolomics. Our results showed that the combination of D-Squame D100 tape with a methyl tert-butyl ether/methanol extractant is optimal for skin surface lipidomics. Performing the skin-taping procedure 5 times with 1 tape yields sufficient biomass for lipid analysis, whereas the optimal taping procedure varies for water-soluble compounds. In addition, our study identified associations among the skin surface metabolites, some of which potentially underlie the formation of microbial cutotypes and offer insights into host-microbe interactions.</p>","PeriodicalId":94239,"journal":{"name":"The Journal of investigative dermatology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of investigative dermatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jid.2024.08.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Characterizing the metabolite fingerprint from the skin surface provides invaluable insights into skin biology and microbe-host interactions. To ensure data accuracy and reproducibility, it is essential to develop standard operating procedures for skin surface metabolomics. However, there is a notable lack of studies in this area. In this study, we thoroughly evaluated different sampling materials, extraction solvents, taping methods (frequency and number of tapes), and analytical techniques to optimize skin surface metabolomics. Our results showed that the combination of D-Squame D100 tape with a methyl tert-butyl ether/methanol extractant is optimal for skin surface lipidomics. Performing the skin-taping procedure 5 times with 1 tape yields sufficient biomass for lipid analysis, whereas the optimal taping procedure varies for water-soluble compounds. In addition, our study identified associations among the skin surface metabolites, some of which potentially underlie the formation of microbial cutotypes and offer insights into host-microbe interactions.