Deep learning-based multimodal spatial transcriptomics analysis for cancer.

Advances in cancer research Pub Date : 2024-01-01 Epub Date: 2024-08-22 DOI:10.1016/bs.acr.2024.08.001
Pankaj Rajdeo, Bruce Aronow, V B Surya Prasath
{"title":"Deep learning-based multimodal spatial transcriptomics analysis for cancer.","authors":"Pankaj Rajdeo, Bruce Aronow, V B Surya Prasath","doi":"10.1016/bs.acr.2024.08.001","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of deep learning (DL) and multimodal spatial transcriptomics (ST) has revolutionized cancer research, offering unprecedented insights into tumor biology. This book chapter explores the integration of DL with ST to advance cancer diagnostics, treatment planning, and precision medicine. DL, a subset of artificial intelligence, employs neural networks to model complex patterns in vast datasets, significantly enhancing diagnostic and treatment applications. In oncology, convolutional neural networks excel in image classification, segmentation, and tumor volume analysis, essential for identifying tumors and optimizing radiotherapy. The chapter also delves into multimodal data analysis, which integrates genomic, proteomic, imaging, and clinical data to offer a holistic understanding of cancer biology. Leveraging diverse data sources, researchers can uncover intricate details of tumor heterogeneity, microenvironment interactions, and treatment responses. Examples include integrating MRI data with genomic profiles for accurate glioma grading and combining proteomic and clinical data to uncover drug resistance mechanisms. DL's integration with multimodal data enables comprehensive and actionable insights for cancer diagnosis and treatment. The synergy between DL models and multimodal data analysis enhances diagnostic accuracy, personalized treatment planning, and prognostic modeling. Notable applications include ST, which maps gene expression patterns within tissue contexts, providing critical insights into tumor heterogeneity and potential therapeutic targets. In summary, the integration of DL and multimodal ST represents a paradigm shift towards more precise and personalized oncology. This chapter elucidates the methodologies and applications of these advanced technologies, highlighting their transformative potential in cancer research and clinical practice.</p>","PeriodicalId":94294,"journal":{"name":"Advances in cancer research","volume":"163 ","pages":"1-38"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431148/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cancer research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.acr.2024.08.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of deep learning (DL) and multimodal spatial transcriptomics (ST) has revolutionized cancer research, offering unprecedented insights into tumor biology. This book chapter explores the integration of DL with ST to advance cancer diagnostics, treatment planning, and precision medicine. DL, a subset of artificial intelligence, employs neural networks to model complex patterns in vast datasets, significantly enhancing diagnostic and treatment applications. In oncology, convolutional neural networks excel in image classification, segmentation, and tumor volume analysis, essential for identifying tumors and optimizing radiotherapy. The chapter also delves into multimodal data analysis, which integrates genomic, proteomic, imaging, and clinical data to offer a holistic understanding of cancer biology. Leveraging diverse data sources, researchers can uncover intricate details of tumor heterogeneity, microenvironment interactions, and treatment responses. Examples include integrating MRI data with genomic profiles for accurate glioma grading and combining proteomic and clinical data to uncover drug resistance mechanisms. DL's integration with multimodal data enables comprehensive and actionable insights for cancer diagnosis and treatment. The synergy between DL models and multimodal data analysis enhances diagnostic accuracy, personalized treatment planning, and prognostic modeling. Notable applications include ST, which maps gene expression patterns within tissue contexts, providing critical insights into tumor heterogeneity and potential therapeutic targets. In summary, the integration of DL and multimodal ST represents a paradigm shift towards more precise and personalized oncology. This chapter elucidates the methodologies and applications of these advanced technologies, highlighting their transformative potential in cancer research and clinical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的癌症多模态空间转录组学分析
深度学习(DL)和多模态空间转录组学(ST)的出现彻底改变了癌症研究,为肿瘤生物学提供了前所未有的见解。本书的这一章探讨了深度学习与空间转录组学的整合,以推进癌症诊断、治疗规划和精准医疗。卷积神经网络是人工智能的一个子集,它利用神经网络对庞大数据集中的复杂模式进行建模,大大提高了诊断和治疗应用的效率。在肿瘤学领域,卷积神经网络在图像分类、分割和肿瘤体积分析方面表现出色,对于识别肿瘤和优化放疗至关重要。本章还深入探讨了多模态数据分析,它整合了基因组、蛋白质组、成像和临床数据,提供了对癌症生物学的整体理解。利用不同的数据源,研究人员可以发现肿瘤异质性、微环境相互作用和治疗反应的复杂细节。这方面的例子包括将核磁共振成像数据与基因组图谱相结合,以准确进行胶质瘤分级;将蛋白质组学数据与临床数据相结合,以揭示耐药机制。DL 与多模态数据的整合可为癌症诊断和治疗提供全面、可行的见解。DL 模型与多模态数据分析之间的协同作用提高了诊断准确性、个性化治疗计划和预后建模。值得注意的应用包括 ST,它可以绘制组织背景下的基因表达模式图,为了解肿瘤异质性和潜在治疗靶点提供重要依据。总之,DL 与多模态 ST 的整合代表着向更精确、更个性化肿瘤学方向的范式转变。本章阐明了这些先进技术的方法和应用,强调了它们在癌症研究和临床实践中的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancements in computer vision and pathology: Unraveling the potential of artificial intelligence for precision diagnosis and beyond. Deciphering the genetic and epigenetic architecture of prostate cancer. Epigenetic regulation of androgen dependent and independent prostate cancer. Molecular landscape of prostate cancer bone metastasis. Multiplexed quantitative proteomics in prostate cancer biomarker development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1