{"title":"Deep learning-based multimodal spatial transcriptomics analysis for cancer.","authors":"Pankaj Rajdeo, Bruce Aronow, V B Surya Prasath","doi":"10.1016/bs.acr.2024.08.001","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of deep learning (DL) and multimodal spatial transcriptomics (ST) has revolutionized cancer research, offering unprecedented insights into tumor biology. This book chapter explores the integration of DL with ST to advance cancer diagnostics, treatment planning, and precision medicine. DL, a subset of artificial intelligence, employs neural networks to model complex patterns in vast datasets, significantly enhancing diagnostic and treatment applications. In oncology, convolutional neural networks excel in image classification, segmentation, and tumor volume analysis, essential for identifying tumors and optimizing radiotherapy. The chapter also delves into multimodal data analysis, which integrates genomic, proteomic, imaging, and clinical data to offer a holistic understanding of cancer biology. Leveraging diverse data sources, researchers can uncover intricate details of tumor heterogeneity, microenvironment interactions, and treatment responses. Examples include integrating MRI data with genomic profiles for accurate glioma grading and combining proteomic and clinical data to uncover drug resistance mechanisms. DL's integration with multimodal data enables comprehensive and actionable insights for cancer diagnosis and treatment. The synergy between DL models and multimodal data analysis enhances diagnostic accuracy, personalized treatment planning, and prognostic modeling. Notable applications include ST, which maps gene expression patterns within tissue contexts, providing critical insights into tumor heterogeneity and potential therapeutic targets. In summary, the integration of DL and multimodal ST represents a paradigm shift towards more precise and personalized oncology. This chapter elucidates the methodologies and applications of these advanced technologies, highlighting their transformative potential in cancer research and clinical practice.</p>","PeriodicalId":94294,"journal":{"name":"Advances in cancer research","volume":"163 ","pages":"1-38"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431148/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cancer research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.acr.2024.08.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of deep learning (DL) and multimodal spatial transcriptomics (ST) has revolutionized cancer research, offering unprecedented insights into tumor biology. This book chapter explores the integration of DL with ST to advance cancer diagnostics, treatment planning, and precision medicine. DL, a subset of artificial intelligence, employs neural networks to model complex patterns in vast datasets, significantly enhancing diagnostic and treatment applications. In oncology, convolutional neural networks excel in image classification, segmentation, and tumor volume analysis, essential for identifying tumors and optimizing radiotherapy. The chapter also delves into multimodal data analysis, which integrates genomic, proteomic, imaging, and clinical data to offer a holistic understanding of cancer biology. Leveraging diverse data sources, researchers can uncover intricate details of tumor heterogeneity, microenvironment interactions, and treatment responses. Examples include integrating MRI data with genomic profiles for accurate glioma grading and combining proteomic and clinical data to uncover drug resistance mechanisms. DL's integration with multimodal data enables comprehensive and actionable insights for cancer diagnosis and treatment. The synergy between DL models and multimodal data analysis enhances diagnostic accuracy, personalized treatment planning, and prognostic modeling. Notable applications include ST, which maps gene expression patterns within tissue contexts, providing critical insights into tumor heterogeneity and potential therapeutic targets. In summary, the integration of DL and multimodal ST represents a paradigm shift towards more precise and personalized oncology. This chapter elucidates the methodologies and applications of these advanced technologies, highlighting their transformative potential in cancer research and clinical practice.