Gray matter based spatial statistics framework in the 1-month brain: insights into gray matter microstructure in infancy.

IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY Brain Structure & Function Pub Date : 2024-12-01 Epub Date: 2024-09-24 DOI:10.1007/s00429-024-02853-w
Marissa A DiPiero, Patrik Goncalves Rodrigues, McKaylie Justman, Sophia Roche, Elizabeth Bond, Jose Guerrero Gonzalez, Richard J Davidson, Elizabeth M Planalp, Douglas C Dean
{"title":"Gray matter based spatial statistics framework in the 1-month brain: insights into gray matter microstructure in infancy.","authors":"Marissa A DiPiero, Patrik Goncalves Rodrigues, McKaylie Justman, Sophia Roche, Elizabeth Bond, Jose Guerrero Gonzalez, Richard J Davidson, Elizabeth M Planalp, Douglas C Dean","doi":"10.1007/s00429-024-02853-w","DOIUrl":null,"url":null,"abstract":"<p><p>The neurodevelopmental epoch from fetal stages to early life embodies a critical window of peak growth and plasticity in which differences believed to be associated with many neurodevelopmental and psychiatric disorders first emerge. Obtaining a detailed understanding of the developmental trajectories of the cortical gray matter microstructure is necessary to characterize differential patterns of neurodevelopment that may subserve future intellectual, behavioral, and psychiatric challenges. The neurite orientation dispersion density imaging (NODDI) Gray-Matter Based Spatial Statistics (GBSS) framework leverages information from the NODDI model to enable sensitive characterization of the gray matter microstructure while limiting partial volume contamination and misregistration errors between images collected in different spaces. However, limited contrast of the underdeveloped brain poses challenges for implementing this framework with infant diffusion MRI (dMRI) data. In this work, we aim to examine the development of cortical microstructure in infants. We utilize the NODDI GBSS framework and propose refinements to the original framework that aim to improve the delineation and characterization of gray matter in the infant brain. Taking this approach, we cross-sectionally investigate age relationships in the developing gray matter microstructural organization in infants within the first month of life and reveal widespread relationships with the gray matter architecture.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2445-2459"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611675/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-024-02853-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The neurodevelopmental epoch from fetal stages to early life embodies a critical window of peak growth and plasticity in which differences believed to be associated with many neurodevelopmental and psychiatric disorders first emerge. Obtaining a detailed understanding of the developmental trajectories of the cortical gray matter microstructure is necessary to characterize differential patterns of neurodevelopment that may subserve future intellectual, behavioral, and psychiatric challenges. The neurite orientation dispersion density imaging (NODDI) Gray-Matter Based Spatial Statistics (GBSS) framework leverages information from the NODDI model to enable sensitive characterization of the gray matter microstructure while limiting partial volume contamination and misregistration errors between images collected in different spaces. However, limited contrast of the underdeveloped brain poses challenges for implementing this framework with infant diffusion MRI (dMRI) data. In this work, we aim to examine the development of cortical microstructure in infants. We utilize the NODDI GBSS framework and propose refinements to the original framework that aim to improve the delineation and characterization of gray matter in the infant brain. Taking this approach, we cross-sectionally investigate age relationships in the developing gray matter microstructural organization in infants within the first month of life and reveal widespread relationships with the gray matter architecture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于灰质的 1 个月大脑空间统计框架:对婴儿期灰质微观结构的洞察。
从胎儿期到生命早期的神经发育阶段是生长和可塑性达到顶峰的关键时期,在这一时期,据信与许多神经发育和精神疾病相关的差异首次出现。详细了解大脑皮层灰质微观结构的发育轨迹对于描述神经发育的差异模式非常必要,这些差异模式可能会影响未来的智力、行为和精神疾病。神经元定向弥散密度成像(NODDI)灰质空间统计(GBSS)框架利用 NODDI 模型的信息,对灰质微观结构进行了灵敏的表征,同时限制了部分体积污染和在不同空间采集的图像之间的错误配准误差。然而,未发育完全的大脑对比度有限,这给利用婴儿弥散核磁共振成像(dMRI)数据实施该框架带来了挑战。在这项工作中,我们旨在研究婴儿大脑皮层微观结构的发展。我们利用 NODDI GBSS 框架,并对原始框架提出改进建议,旨在改善婴儿大脑灰质的划分和特征描述。利用这种方法,我们横截面研究了婴儿出生后一个月内灰质微结构组织发育的年龄关系,并揭示了与灰质结构的广泛关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Structure & Function
Brain Structure & Function 医学-解剖学与形态学
CiteScore
6.00
自引率
6.50%
发文量
168
审稿时长
8 months
期刊介绍: Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.
期刊最新文献
Enlargement of the human prefrontal cortex and brain mentalizing network: anatomically homogenous cross-species brain transformation. The expression of transcription factors in the human fetal subthalamic nucleus suggests its origin from the first hypothalamic prosomere. ds-FCRN: three-dimensional dual-stream fully convolutional residual networks and transformer-based global-local feature learning for brain age prediction. Physiological fingerprinting of audiovisual warnings in assisted driving conditions: an investigation of fMRI and peripheral physiological indicators. Basal forebrain innervation of the amygdala: an anatomical and computational exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1