{"title":"Triboelectrification of Active Pharmaceutical Ingredients: Amines and Their Hydrochloride Salts.","authors":"Kenta Fujinuma, Shota Okada, Kyu Hayashi, Masataka Ito, Hironori Suzuki, Kiyohiko Sugano, Shuji Noguchi","doi":"10.1248/cpb.c24-00303","DOIUrl":null,"url":null,"abstract":"<p><p>The triboelectric properties of active pharmaceutical ingredients (APIs) contribute to problems during the manufacturing of pharmaceuticals. However, the triboelectric properties of APIs have not been comprehensively characterized. In this study, the effect of salt formulation on the triboelectric properties of APIs was investigated. The triboelectric properties of three groups of amines, namely tertiary amines, purine bases, and amino acids, and their hydrochlorides were evaluated using a suction-type Faraday cage meter. Most of the hydrochloride salts exhibited more negative charges than the corresponding free bases, and the degree by which the triboelectric property changed upon hydrochlorination depended on the structural groups of the compounds. In the case of tertiary amines, the change in the zero-charge margin upon hydrochlorination was negatively correlated with the zero-charge margin of the free base. In contrast, hydrochlorination of the amino acids led to a significant change in the zero-charge margin. In most cases, salt formation also affected the triboelectric properties of API powders. Controlling the triboelectric properties of APIs solves various problems caused by the electrification of raw material powders and granules during the production of pharmaceuticals, thereby increasing the quality of produced pharmaceuticals.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"72 9","pages":"817-825"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/cpb.c24-00303","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The triboelectric properties of active pharmaceutical ingredients (APIs) contribute to problems during the manufacturing of pharmaceuticals. However, the triboelectric properties of APIs have not been comprehensively characterized. In this study, the effect of salt formulation on the triboelectric properties of APIs was investigated. The triboelectric properties of three groups of amines, namely tertiary amines, purine bases, and amino acids, and their hydrochlorides were evaluated using a suction-type Faraday cage meter. Most of the hydrochloride salts exhibited more negative charges than the corresponding free bases, and the degree by which the triboelectric property changed upon hydrochlorination depended on the structural groups of the compounds. In the case of tertiary amines, the change in the zero-charge margin upon hydrochlorination was negatively correlated with the zero-charge margin of the free base. In contrast, hydrochlorination of the amino acids led to a significant change in the zero-charge margin. In most cases, salt formation also affected the triboelectric properties of API powders. Controlling the triboelectric properties of APIs solves various problems caused by the electrification of raw material powders and granules during the production of pharmaceuticals, thereby increasing the quality of produced pharmaceuticals.
期刊介绍:
The CPB covers various chemical topics in the pharmaceutical and health sciences fields dealing with biologically active compounds, natural products, and medicines, while BPB deals with a wide range of biological topics in the pharmaceutical and health sciences fields including scientific research from basic to clinical studies. For details of their respective scopes, please refer to the submission topic categories below.
Topics: Organic chemistry
In silico science
Inorganic chemistry
Pharmacognosy
Health statistics
Forensic science
Biochemistry
Pharmacology
Pharmaceutical care and science
Medicinal chemistry
Analytical chemistry
Physical pharmacy
Natural product chemistry
Toxicology
Environmental science
Molecular and cellular biology
Biopharmacy and pharmacokinetics
Pharmaceutical education
Chemical biology
Physical chemistry
Pharmaceutical engineering
Epidemiology
Hygiene
Regulatory science
Immunology and microbiology
Clinical pharmacy
Miscellaneous.